期刊文献+

奇周期最佳几乎二进序列偶理论研究 被引量:4

Research on Odd-Periodic Perfect Almost Binary Sequence Pair
下载PDF
导出
摘要 提出了一种新的具有良好奇周期相关特性的最佳离散信号———奇周期最佳几乎二进序列偶.奇周期最佳几乎二进序列偶中2个序列中均有一个元素为“0”元素,其他元素取值均为“+1”或“-1”,并且其奇周期自相关函数为单值脉冲函数.同时研究了奇周期最佳几乎二进序列偶的变换性质和频谱特性,给出了一些组合允许条件.研究结果表明,奇周期最佳几乎二进序列偶扩大了奇周期最佳几乎二进序列的存在空间,且为奇周期最佳几乎二进序列偶中2个序列相同时的特殊情况. A new kind of perfect discrete signal with good odd-periodic correlation function is presented. It is odd-periodic perfect almost binary sequence pair. The elements of each sequence in odd-periodic perfect almost binary sequence pair are "1" or " - 1" with exception of a single zero element, and odd-periodic perfect almost binary sequence pair possess a perfect odd-autocorrelation function. The transformation features and Fourier spectrum of odd-periodic perfect almost binary sequence pair are studied. Some combined admissibility conditions are also given out. It is found that odd-periodic perfect almost binary sequence pair spreads the existing range of odd-periodic perfect almost binary sequence and odd-periodic perfect almost binary sequence is a special case when the two sequences in the odd-periodic perfect almost binary sequence pair are same.
出处 《北京邮电大学学报》 EI CAS CSCD 北大核心 2006年第6期77-80,共4页 Journal of Beijing University of Posts and Telecommunications
基金 国家自然科学基金项目(60372097) 国家自然科学基金重点项目(60432040) 北京市自然科学基金项目(4052021) 韩国仁荷大学IT研究中心项目(INHAUWB-ITRC)
关键词 最佳信号 序列偶 奇周期 相关 perfect signal sequence pair odd-periodic correlation
  • 相关文献

参考文献4

  • 1[2]Wolfmann J.Almost perfect binary sequences[J].IEEE Trans Theory,1992,38(4):1412-1418.
  • 2[3]Luke H D,Schotten H D.Odd-pefect,almost binary correlation sequences[J].IEEE Trans Aero and Elec Syst,1995,31(1):495-498.
  • 3[4]Sarwate D V,Pursley M B.Crosscorrelation properties of pseudorandom and related sequences[J].Proceedings of the IEEE,1980,68(5):593-619.
  • 4JiangTing,ZhaoXiaoqun,HouLantian.PERFECT PUNCTURED BINARY SEQUENCE PAIRS[J].Journal of Electronics(China),2003,20(4):285-288. 被引量:15

共引文献14

同被引文献33

  • 1蒋挺,赵成林,毛飞,周正.最佳屏蔽二进阵列偶构造方法研究[J].通信学报,2005,26(1):17-22. 被引量:2
  • 2毛飞,蒋挺,赵成林,周正.伪随机二进序列偶研究[J].通信学报,2005,26(8):94-98. 被引量:16
  • 3蒋挺,毛飞,赵成林,周正.几乎最佳二进阵列偶理论研究[J].电子学报,2005,33(10):1817-1821. 被引量:15
  • 4Mao Fei Jiang Ting Zhao Chenglin Zhou Zheng.RESEARCH ON PERFECT DYADIC BINARY SEQUENCE PAIR[J].Journal of Electronics(China),2006,23(3):361-364. 被引量:2
  • 5Wolfmann J. Almost perfect binary sequences[J], IEEE Trans. on Inform. Theory, 1992, 38(4): 1412-1418.
  • 6Anon. Odd-pefect, almost binary correlation sequences[J].IEEE Trans. on Aero. And Elec. Syst, 1995, 31(1): 495-498.
  • 7Sarwate D V, and Pursley M B. Crosscorrelation properties of pseudorandom and related sequences[J]. Proc. IEEE, 1980, 68(5): 593-619.
  • 8Hoholdt T, et al.. Ternary sequences with perfect periodic auto-correlation[J]. IEEE Trans. on Inform. Theory, 1983, IT -29(4): 597-600.
  • 9Fan P Z, Darnell M, Sequence Design for Communica- tions Applications[M]. New York:Wiley, 1996.
  • 10Luke H D,Schotten H D, Hadinejad-Mahram H. Binary and quadriphase sequences with optimal autocorrelation properties:a survey[J]. IEEE Transactions on Informa- tion Theory, 2003,49 (12) : 3271-3282.

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部