摘要
对20个ACEI化合物用量子化学方法进行结构优化并计算出10个参数,用9种不同隐含层节点数的BP神经网络研究了ACEI的定量构效关系,建立了节点为10/6/1的三层BP神经网络模型。结果表明:以量化理论计算所得参数可以构建合理的ACEI定量构效关系模型,神经网络模型M6的r2=0.995,S=0.050,6个验证集化合物的残差平方和为0.002,预测能力明显强于多元线形回归模型,亦优于同类文献报道,可作为ACEI研发领域中预测先导化合物活性的理论工具。
The geometries and electronic structures of 20 Angiotensin Converting enzyme inhibitors (ACEI) had been optimized by using quantum chemical methods and 10 quantum-chemical parameters such as energies, atom-charges etc. , were calculated. Nine back propagation (BP) artificial neural networks (ANN) with different nodes were trained to research quantitative structure-activity relationship (QSAR) of ACEI. A 3-layers BP artificial neural network model with 6 nodes in hidden layer was developed. The results of statistic analysis are : r^2 = 0. 995, S = 0. 050, which shows that artificial neural network model M6 is more accurate and precise than multiple linear regression models. The established ANN model can be applied to predict the activity of ACEI trustfully.
出处
《分析化学》
SCIE
EI
CAS
CSCD
北大核心
2006年第12期1674-1678,共5页
Chinese Journal of Analytical Chemistry
基金
"863"项目新药博士基金资助项目(No.2003AA2Z3515)
关键词
血管紧张素转换酶抑制剂
定量构效关系
反向传输神经网络
量子化学计算
Angiotensin converting enzyme inhibitors, quantitative structure-activity relationship, back propagation neural network, quantum-chemical calculation