期刊文献+

基于数据融合的多特征遥感图像分类 被引量:4

Multi-Feature Remote Sensing Image Classification Based on Data Fusion
下载PDF
导出
摘要 以多光谱图像为研究对象,综合利用遥感图像的光谱、纹理和数学变换特征,提出了一种基于数据融合的多特征遥感地物分类方法。该方法针对不同的特征分别构造了神经网络分类器和K-均值聚类器,并对前者利用A daboost算法进行提升,然后再将各特征的分类结果利用证据理论合成公式融合得到最终结果。实验结果表明,该方法的分类效果要优于单特征的分类结果。 Remote sensing image classification is a key application of pattern recognition in the remote sensing field. Multi-spectral images are studies under the situation in which exact training data are absent. A method for multi-feature remote sensing image classification based on data fusion is proposed. Classifiers by using ANN and K-Means technologies are constructed according to different features with ANN boosted by the Adaboost algorithm. The final map is an integration results with different features. Experiments show that the fusion classification is superior to the result of any classifier with a single feature.
出处 《数据采集与处理》 CSCD 北大核心 2006年第4期463-467,共5页 Journal of Data Acquisition and Processing
基金 解放军部级基金资助项目
关键词 图像分类 特征选择 ADABOOST算法 证据理论 image classifications feature extractions Adaboost algorithms evidence theory
  • 相关文献

参考文献8

  • 1[3]Liu Anfei,Li Bicheng,Chen Gang,et al.A new ART neural network for remote sensing image classification[C]//ICNC 2005,LNCS 3611.Berlin,Heidelberg:Springer-Verlag,2005:37-42.
  • 2[4]Lambert P,Carron T.Symbolic fusion of luminance-hue-chroma features for region segmentation[J].Pattern Recognition Society,1999(32):1857-1872.
  • 3[6]Sonka M,Hlavac V,Boyle R.Image processing,analysis and machine vision[M].2nd Ed.Posts & Telecom Press,2003:47-50.
  • 4[7]Chen G,Li B C,Guo Z G.Remote sensing image classification based on evidence theory and neural networks[C]//International Symposium on Neural Networks.Berlin,Heidelberg:Springer-Verlag,2004:971-976.
  • 5[8]Cartmell C A.Artificial neural nets and RBF nets[R].Report for the Degree of Bachelor of Science with Honours in Computer Science,2002:7-21.
  • 6[9]Skurichina M,Kuncheva L I,Duin R P W.Bagging and boosting for the neareast mean classifier:effects of sample size on diversity and accuracy[C]//MCS 2002.Berlin,Heidelberg:Springer-Verlag,LNCS 2364,2002:62-71.
  • 7[10]Li Bicheng.A combination rule of evidence theory based on min-max operator[C]//SPIE′s Third international Asia-Pacific Environmental Remote Sensing.USA:SPIE International Society for Optical engineering,2002.10:6-8.
  • 8孙全,叶秀清,顾伟康.一种新的基于证据理论的合成公式[J].电子学报,2000,28(8):116-119. 被引量:442

二级参考文献3

  • 1[1]Ronald R.Yager.On the dempster-shafer framework and new combination rules[J].Information Sciences,1987,41:93-137.
  • 2[2]G.Shafer.A mathematical theory of evidence[M].Princeton U.P.,Princeton,1976.
  • 3[3]A.P.Dempster.Upper and lower probabilities induced by a multi-valued mapping[J].Ann.Math.Statist.1967,38:325-339.

共引文献441

同被引文献45

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部