期刊文献+

不同入射角横向紊动射流流场的数值模拟

A Numerical Simulation in Turbulent Jet into the Transflow with Different Injection Angles
下载PDF
导出
摘要 采用RNGk-ε湍流模型和标准k-ε对射流出射角度α=25°、35°、45°的横向紊动射流流场进行了数值模拟,结合SIMPLEC算法求解了适体坐标系下的控制方程,近壁区流动采用两层模型的壁面函数法处理,结果给出了射流与主气流速度比M为4、6和8时的速度场和湍动能。结果表明:M和α值是影响横向紊动射流的重要因素,M值增加,射流对主流场影响区域增加,α值变化,射流对主流场上游影响区域较大;并且通过与实验数值的比较,发现RNGk-ε模型对横向紊动射流流场的预测能力比标准k-ε模型有所改进。 By using the RNG κ-ε turbulence model numerical simulations were performed to investigate the characteristics of Turbulent Jet Into the Transflow, at the jet injection angles of 25,35,45deg. The SIMPLEC algorithm in the body-fitted coordinates and the modified wall function method, two-layer model, was adopted to simulate the flow in the near-wall region and the outer core flow, at two jet-to-crossflow velocity ratios, 2,6 and 4. The turbulent kinetic energy fields jet trajectories and the velocity fields were given. It can be concluded that, when the jet is injected at positive angles, the initial section of the jet increases and the region affected by the jet decreases in the vertical direction; moreover, the circumfluence toward the jet exit becomes more obvious, and the separation events in the lee of the jet weaken;the prediction performance of the RNGK - ε model is better when simulating the turbulent lets in cross-flow.
出处 《东北电力大学学报》 2006年第4期41-45,共5页 Journal of Northeast Electric Power University
关键词 入射角度 紊动射流 湍流模型 数值模拟 Injection angles Turbulent jet Turbulence model Numerical simulation
  • 相关文献

参考文献14

  • 1[1]Chang Y.R.,Chen K.S.Prediction of opposing turbulent line jets discharged laterally into a confined crossflow[J].Int.J.Heat Mass Transfer,1995,38(9):1693-1703.
  • 2[2]Tamamidis P.,Assanis D.N.Three-dimensional incompressible flow calculations with alternative discretization schemes[J].Numerical Heat Transfer,Part B,1993,24(1):57-76.
  • 3[3]Lakehal D.,Theodoridis G.,Rodi W.Three Dimensional flow and heat transfer calculations of film cooling at the leading edge of a symmetrical turbine blade model[J].Int.Journal of Heat & Fluid Flow,2001,22(2):113-122.
  • 4徐江荣,周志军,姚强,曹欣玉,岑可法.强旋转受限射流的数值模拟[J].中国电机工程学报,1999,19(12):41-45. 被引量:10
  • 5[5]Demuren A.O.Characteristics of three-dimensional turbulent jets in crossflow[J].Int.J.Engng.Sci.,1993,31 (6):899-913.
  • 6樊建人,罗坤,金晗辉,岑可法.直接数值模拟三维气固两相混合层中颗粒与流体的双向耦合[J].中国电机工程学报,2003,23(4):153-157. 被引量:35
  • 7罗坤,刘小云,樊建人,岑可法.三维混合层的直接数值模拟和实验验证[J].中国电机工程学报,2004,24(3):183-186. 被引量:16
  • 8周昊,岑可法,樊建人.分离涡方法模拟浓淡气固射流两相非稳态流动特性研究[J].中国电机工程学报,2005,25(7):1-6. 被引量:21
  • 9[9]SangW.L.,Joon S.L.,Sung T.R.,1994:Experimental study on the flow characteristics of streamwise inclined jets in crossflow on flat plate[J].ASME Journal of Turbomachinery,116(1),97-105.
  • 10[10]Raymond P.F.,Pei-Kuan Wu,2000:Effects of injection angle on atomization of liquid jets in transverse airflow[J].AIAA Journal,38(1),64-72.

二级参考文献42

  • 1叶孟琪,陈义良,蔡晓丹.有旋湍流场中湍流模型应用的研究[J].工程热物理学报,1997,18(1):28-32. 被引量:4
  • 2樊建人 罗坤 金晗辉 等(Fan Jianren Luo Kun Jin Hanhui et al).直接数值模拟三维气固两相混合层中颗粒与流体的双向耦合[J]..
  • 3Wen F, Kamalu N, Chung J N, et al. Particle dispersion by vortex structure in plane mixing layers[J]. Trans.ASME: J. Fluids Engng.,1992, 114(4): 657-666.
  • 4Crowe C T,Troutt T R,Chung J N.Numerical models for two-phase turbulent flows[J].Ann.Rev.Fluid Mech.1996,28:11-18.
  • 5Squires K D,Eaton J K.Preferential concentration of particles by turbulence[J].Physics Fluids A,1991,3:1169-1178.
  • 6Pan Y,Banerjee S.Numerical simulation of particle interactions with wall turbulence[J].Phys.Fhuld,1996,10(8):2733-2740.
  • 7Tamamidis P, Assanis D N. Three-dimensional incompressible flow calculations with alternative discretization schemes[J]. Numerical Heat Transfer, Part B, 1993, 24(1):57-76.
  • 8Lakehal D, Theodoridis G, Rodi W. Three dimensional flow and heat transfer calculations of film cooling at the leading edge of a symmetrical turbine blade model[J].Int. J. of Heat & Fluid Flow,2001, 22(2):113-122.
  • 9Yuan L L, Street R L. Large-eddy simulation of a round jet in crossflow[J].J.Fluid Mech., 1999, 379(1): 71-104.
  • 10Yakhot V, Orzag S A. Renormalization group analysis of turbulence:basic theory[J]. J. Science Comput., 1986, 1(1): 1-51.

共引文献89

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部