期刊文献+

基于MBLMS算法的内燃机振动信号盲源分离 被引量:2

Blind Source Separation of Vibration Signals of IC Engine Based on MBLMS Algorithm
下载PDF
导出
摘要 应用Gray’s变量准则作为代价函数,研究了基于源信号非高斯性的多通道盲最小均方差算法。针对实际应用,生成3路卷积混合信号进行盲源分离,分离信号与源信号相比,除幅值缩放和时间延迟外,其他信息基本得到了保留。在实测内燃机振动信号分离中,所得到的3个分离信号经过分析后确认为排气门落座、活塞撞击和进气阀落座产生的信号。仿真信号和实测内燃机振动信号的分离结果表明,多通道盲最小均方差是一种有效的盲源分离算法。 This paper describes the algorithm of Multi-channel Blind Least Mean Square (MBLMS) based on nongaussianity of sources by using Gray’s variable norm as the cost function. Aimed at practical application, three convolutive-mixture signals are generated to operate blind source separation. Compared with the sources, separated signals keep all the information except scaling and time delays. In the separation of actually measured IC engine vibration signals, three separated signals are respectively generated by exhaust valve, piston slap and inlet valve by analysis. The separated results of simulated signals and the actual IC engine vibration signals indicate that MBLMS could be an effective algorithm for blind source separation.
作者 石林锁 袁涛
出处 《振动.测试与诊断》 EI CSCD 2006年第4期257-260,共4页 Journal of Vibration,Measurement & Diagnosis
关键词 盲源分离 内燃机 卷积混合 MBLMS算法 Gray's变量准则 blind source separation IC engine convolutive mixture MBLMS algorithm Gray’s variable norm
  • 相关文献

参考文献6

  • 1Grover E C,Lalor N.A reivew of low noise diesel engine design at ISVR[J].Journal of Sound and Vibration,1973,28 (3):403-431.
  • 2Comon P.Independent component analysis,a new concept?[J].Signal Processing,1994,36(3):287-314.
  • 3Li W,Gu F,Ball A D,et al.A study of the noise from diesel engines using the independent component analysis[J].Mechanical Systems and Signal processing,2001,15(6):1 165-1 184.
  • 4Simon H.Unsupervised adaptive filtering volume Ⅰ:blind source separation[M].New York:John Wiley and Sons,2000:377-434.
  • 5Lambert R H.Multichannel blind deconvolution:FIR matrix algebra and separation of multipath mixtures[D].USA:University of Southern California,1996.
  • 6Liu X,Randall R B.Blind source separation of internal combustion engine piston slap from other measured vibration signals[J].Mechanical System and Signal Processing,2005,19 (6):1 196-1 208.

同被引文献29

  • 1焦卫东,常永萍.机械源波形恢复方法的研究[J].振动.测试与诊断,2006,26(1):19-23. 被引量:1
  • 2吴正国,唐劲松,张林柯等译.波兰Andrzej CICHOCKI,日本Shu-ichi AMARI著.自适应盲信号与图像处理[M].北京:电子工业出版社.2005.
  • 3Chakravorty P K. Identification of self noise sources in a ship[J]. Naval Engineers Journal, 1990,9 : 67-69.
  • 4Gelle G, Colas M, Delaunav G. Blind sources separation applied to rotating machines monitoring by acoustical and vibrations analysis [J]. Mechanical Systems and Signal Processing, 2000,14(3) :427-442.
  • 5陈少林.声学故障诊断中信号盲处理和可视化声源识别的研究[R].上海:上海交通大学,2004.
  • 6P. G. Georgiev, F. Theis, A. Cichocki. Sparse component analysis and blind source separation of underdetermined mixtures [ J ]. IEEE Transactions. Neural Networks, 2005,16(4):992-996.
  • 7M. Zibulevsky, B. Pearlmutter. Blind source separation by sparse decomposition in a signal dictionary[ J]. Neural - Comput, 2001,13 (4) : 863 - 882.
  • 8J.L. Starch,M. Elad, D. Donoho. Redundant multiscale transforms and their application for morphological component separation[ J]. Advances in Imaging and Electron Physics,2004,132(82) :287 - 348.
  • 9J. L. Starck, Y. Moudden, J. Robin. Morphological Component Analysis [ C]. th'oeeedings of SPIE,2005,59(14) : 1 - 15.
  • 10Xinyi Yong, Rabab K. Ward, Gary E. Birch. Generalized Morphological Component Analysis for EEG Source Separation and Artifact Removal [C ]. Proceedings of the 4th International IEEE EMBS Conference on Neural Engineering Antalya, Turkey, April 29 - May 2, 2009:343 - 347.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部