期刊文献+

个性化推荐攻击检测模型研究 被引量:1

Research about personalized recommendation attack detect models
下载PDF
导出
摘要 协同过滤是最核心、最典型的个性化推荐技术,广泛应用于电子商务,但其推荐结果对用户偏好信息的敏感性使得推荐系统易受到人为攻击,电子商务推荐安全成为个性化推荐能否成功应用的关键。作者先简要介绍了个性化推荐及推荐攻击的基本概念;而后分析比较了各种攻击检测模型。 Collaborative filtering which is used widely is vital central technology of personalized recommendation,but the recommended result is so sensitive to user perfect information that the recommended system has significant vulnerabilities. E-business recommended secure is the key of whether the personalized recommendation can success. Concepts of the personalized recommend system and recommended attacks were introduced first. Then the author analyzed analysis and compared the attack detect models.
出处 《农业网络信息》 2006年第12期111-112,共2页 Agriculture Network Information
关键词 协同过滤 个性化推荐 攻击检测模型 电子商务安全 Collaborative filtering Recommended system Attack detect models
  • 相关文献

参考文献6

  • 1M.O’Mahony,N.Hurley,N.Kushmerick,G.Silvestre.Collaborativerecommendation:A robustness analysis[].ACM Transactions onInternet Technology.2004
  • 2O’MahonyM,HurleyN,Kushmerick,N,Silvestre,G.Collaborative recommendation:A robustness analysis[].ACMTransactions on Internet Technology.2004
  • 3BurkeR,MobasherB,ZabickiR,BhaumikR.Detecting ProfileInjection Attacks in Collaborative Recommender Systems-cec[]..
  • 4Resnick,and Varian.Recommender systems[].Communications ofthe ACM.1997
  • 5BurkeR,MobasherB,Bhaumik,R.Limited knowledge shillingattacks in collaborative filtering systems[].Proceedings of therdIJCAIWorkshopinIntelligentTechniquesforPersonalizationEdinburgh.2005
  • 6Chirita.P.A,NejdlW,Zamfir C.Preventing shilling attacks inonline recommender systems[].WIDM’:Proceedings of theth annual ACMinternational workshop on Web information anddata management.2005

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部