期刊文献+

基于小波提取特征的SVM目标识别 被引量:3

Object Recognition by SVM Based on Wavelet Feature Extraction
下载PDF
导出
摘要 基于小波变换提出了一种特征提取及特征选择的方法.通过对小波系数绝对值化,减小了特征的分布范围;对小波进行自适应的过滤提取了目标的主要特征,增加了特征的聚类程度.本文通过SVM分类器对该方法进行验证并与其他方法比较.实验证明该方法有效的提高了目标的识别率,降低了误识别率. In this paper, a method of feature selecting and feature extractihg based on wavelet was proposed. Using this method the range of wavelet coefficients can be reduced by getting the absolute value of the coefficient; clustering the coefficient by filtering them with adaptive threshold. This method is tested by SVM classifier. Experimental results show that this method is effective for object recognition.
作者 王明高 王琰
出处 《沈阳理工大学学报》 CAS 2006年第5期35-38,共4页 Journal of Shenyang Ligong University
关键词 小波变换 SVM 特征提取 wavelet transform SVM( support vector machine) feature extracting
  • 相关文献

参考文献6

二级参考文献9

  • 1薛向阳,樊昌信.一种基于双正交小波变换的静止图像编码算法[J].电子学报,1997,25(4):63-67. 被引量:8
  • 2蒋晓瑜,高稚允,周立伟.小波变换在多光谱图像融合中的应用[J].电子学报,1997,25(8):105-108. 被引量:21
  • 3Donoho D L. De-noising by soft-thresholding[J]. IEEE Transactions on Information Theory, 1995,41:613 ~ 627.
  • 4Donoho D L, Johnstone I M. Ideal spatial adaptation via wavelet shrinkage[ J]. Biometrika, 1994,81: 425 ~ 455.
  • 5Chang S G, Yu B, Martin V. Adaptive wavelet thresholding for image denoising and compression [ J ]. IEEE Transactions on Image Processing, 2000,9 ( 9 ): 1532 ~ 1546.
  • 6Stein C M. Estimation of the mean of a multivariate normal distribution[ J]. Annual Statistical, 1981,9(6): 1135 ~ 1151.
  • 7Yang Dali, Xu Mingxing, Wu Wenhu, et al. A noise cancerlation method based on wavelet transform [ A ]. In: International Symposium on Chinese Spoken Language rocessing [ C ], Beijing, 2000: 211 ~214.
  • 8杨翔英,章毓晋.小波轮廓描述符及在图像查询中的应用[J].计算机学报,1999,22(7):752-757. 被引量:24
  • 9Fan ChangxinFan Changxin is with Xidian University, Professor,FCIC,FCIE,FIEE,FIEEE Lu ZhaoyangLu Zhaoyang is with Xidian University, Ph.D.,Associate Researcher (Xidian University, Xi’an 710071).Recent Progress in Image Coding[J].通信学报,1998,19(5):57-62. 被引量:5

共引文献75

同被引文献46

引证文献3

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部