期刊文献+

硅胶的孔径结构对脱附活化能的影响 被引量:4

Effects of Pore Sizes of Silica Gels on Desorption Activation Energy of Water Vapor
下载PDF
导出
摘要 该文为研究硅胶孔结构对水蒸气吸附速率/脱附活化能的影响,在吸附水蒸气动力学实验中采用了间歇式吸附方法,用程序升温脱附技术测定了水在硅胶上的程序升温脱附(TPD)曲线并估算了水的脱附活化能。结果表明:A型、B型和C型硅胶的平均孔径分别为2nm、5.28nm和10.65nm。在10%~45%低湿范围内,硅胶的平均孔径越大,其吸附初始阶段的吸附速率越快,平衡吸湿量越小;高湿度条件下,硅胶的平均孔径和孔容越大,其吸附初始阶段的吸附速率越慢,平衡吸湿量越大。水分子在A型、B型和C型硅胶上的脱附活化能分别为35.54kJ/mol、31.41kJ/mol和26.16kJ/mol,说明水分子在硅胶上的脱附活化能随着硅胶的孔径增加而明显减小。与微孔硅胶相比.在中高湿度下中孔硅胶有较大的平衡吸附量和较低的脱附活化能。 The effects of pore sizes of silica gels on the adsorption rate and the desorption activation energy of water vapor are studied. Kinetic experiments of water vapor adsorption on the silica gels are carried out by the method of static adsorption, and the temperature program desorption (TPD) experiments are conducted to estimate the desorption activation energy of water on silica gels. Results show that the average pore diameter of the A-type, the B-type and the C-type silica gel is separately 2. 06 nm, 5.28 nm and 10.65 nm; at low relative humidity (10% -45%) with the increases of the pore diameter of the silica gel, the adsorption rates increase at the initial stage of the adsorption and the amount of equilibrium adsorption decreases; at high relative humidity, with the increase of the pore diameter of the silica gel,the adsorption rates decrease at the initial stage of the adsorption, the amount of equilibrium amount adsorption increases. The desorption activation energy of water on the A-type, the B-type and the C-type silica gel is respectively 35.54 kJ/mol, 31.41 kJ/mol and 26.16 kJ/mol,which suggestes that the desorption activation energy of the water on the silica gel decreases as its pore diameter increases. At medium and higher relative humidity, the amount of equilibrium adsorption of water becomes larger and the activation energy of the water desorption on the mesoporous silica gel becomes lower in comparison with those on the microporous silica gel.
作者 李鑫 李忠
出处 《南京理工大学学报》 EI CAS CSCD 北大核心 2006年第6期787-792,共6页 Journal of Nanjing University of Science and Technology
基金 国家自然科学基金重点项目(20336020)
关键词 硅胶 吸附动力学 孔径 水蒸气吸附 脱附活化能 silica gels adsorption kinetics pore sizes water vapor adsorption desorption activation energy
  • 相关文献

参考文献12

  • 1李鑫,李忠,韦利飞,肖静,肖利民.除湿材料研究进展[J].化工进展,2004,23(8):811-815. 被引量:35
  • 2[2]Tashiro Y,Kubo M,Katsumi Y,et al.Assessment of adsorption-desorption characteristics of adsorbents for adsorptive desiccant cooling system[J].Journal of Materials Science,2005,39(4):1 315 -1 319.
  • 3[3]Ng K C,Chua H T,Chung C Y,et al.Experimental investigation of the silica gel-water adsorption isotherm characteristics[J].Applied Thermal Engineering,2001,21(16):1 631 -1 642.
  • 4[4]Muster T H,Prestidge C A,Hayes R A.Water adsorption kinetics and contact angles of silica particles[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2001,176(2-3):253-266.
  • 5[5]Chung T W,Chung C C.Increase in the amount of adsorption on modified silica gel by using neutron flux irradiation[J].Chemical Engineering Science,1998,53(16):2 967 -2 972.
  • 6[6]Chang K S,Chen M T,ChungT W.Effects of the thickness and particle size of silica gel on the heat and mass transfer performance of a silica gel-coated bed for air-conditioning adsorption systems[J].Applied Thermal Engineering 2005,25(14-15):2 330 -2 340.
  • 7[7]Chang K S,Wang H C,Chung T W.Effect of regeneration conditions on the adsorption dehumidification process in packed silica gel beds[J].Applied Thermal Engineering,2004,24(5-6):735-742.
  • 8[8]Daou K,Wang R Z,Xia Z Z.Development of a new synthesized adsorbent for refrigeration and air conditioning applications[J].Applied Thermal Engineering2006,26 (1):56-65.
  • 9[9]Xi H X,Li Z,Zhang H B,et al.Estimation of activated energy and isotherm of low-volatility dioxin by TPD technique[J].Separation and Purification Technology,2003,31(1):39-43.
  • 10[10]Li Z,Wang H J,Xi H X,et al.Estimation of activation energy of desorption of n-hexane on activated carbons by TPD technique[J].Adsorption Science and Technology,2003,21 (2):125-132.

二级参考文献46

  • 1[1]Sing K. S. W., Everett D. H., Haul R. A. W. et al., Pure & 4ppl. Chem. [J], 1985, 57(4): 603
  • 2[2]Rouquerol J., Avnir D., Fairbridge C. W., et al., Pure &Appl. Chem. [J], 1994, 66(8): 1739
  • 3[3]Brunauer S., Deming L., Deming W., Teller E., J. Am. Chem. Soc. [J], 1940, 62(7): 1723
  • 4[5]Donohue M. D., Aranovich G. L., Journal of ColloidAndlnterface Science [J], 1998, 205(1): 121
  • 5[6]Kraemer E. O.,A Treatise on Physical Chemistry [M], New York: D. van Nostrand Co.,1931, P1661
  • 6[7]Mcbain J. W., J. Am Chem. Soc. [J], 1935, 57(4): 699
  • 7[8]Sangwichien C., Aranovich G. L., Donohue M. D., Colloids and Surface [J], 2002, 206(1-3): 313
  • 8[9]Rouquerol F., Rouquerol J., Sing K., Methodology andApplications [M], San Diego, CA: Academic Press,1999, P204
  • 9[10]Takanashi H., Nakamuna A., Nitta T., Chemical Physics Letter [J], 1998, 282(2): 128
  • 10[12]Li Zhou, Yaping Zhou, Shupei Bai, Bin Yang, Journal of Colloid and Interface Science [J], 2002, 253(1): 9

共引文献210

同被引文献37

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部