期刊文献+

一种新型锂盐LiBOB在固态聚合物电解质中的应用 被引量:4

Application of Lithium Salt LiBOB in PEO-based Solid Polymer Electrolytes
下载PDF
导出
摘要 选用LiBOB作为掺杂盐,聚氧化乙烯(PEO)为主体,采用溶液浇铸法制备出不同组成的聚合物电解质膜,运用差热分析、电化学阻抗谱和计时电流进行测试.结果表明:LiBOB.(PEO)n聚合物电解质具有较好的导电性能,锂盐的浓度对体系的结晶度和导电性能有很大的影响.随着锂盐LiBOB浓度的增加,电导率呈现先上升后下降的趋势.当n(O)∶n(Li)=16∶1时,LiBOB.(PEO)n聚合物电解质室温下的电导率达到最高,为5.8μS/cm,锂离子迁移数为0.39. Composite polymer electrolytes have been prepared by casting lithium bis(oxalato)borate (LiBOB) salt and polyethyleme oxide(PEO) blendings, The conductivities of polymer electrolytes are analysized by DSC, EIS, and Steady-state current. The results show that LiBOB+ (PEO)n polymer electrolytes have a higher ionic conductivity, the crystallization and conductivity are effected by the concentration of Lithium salt LiBOB. With the increase of the salt's concentration, the conductivity of polymer electrolytes increases first, then discreases. At the room temperature, when the molecule ratio of n (O) : n (Li) = 16 :1, the maximun conductivity is 5.8μS/cm and the ionic transference number of Li ' is 0.39.
出处 《河北师范大学学报(自然科学版)》 CAS 北大核心 2006年第6期678-681,720,共5页 Journal of Hebei Normal University:Natural Science
基金 国家留学归国科研启动基金资助(2004527)
关键词 LIBOB PEO 电导率 锂离子迁移数 LiBOB PEO conductivity transference number
  • 相关文献

参考文献8

  • 1路密,史鹏飞,陈猛,尹鸽平.基于PEO的复合聚合物电解质的研究进展[J].功能高分子学报,2002,15(3):355-360. 被引量:4
  • 2APPTECCCHI G B,ZANE D,SCROSATI B.PEO-based electrolyte membrane based on LiBC4O8 salt[J].Journal of the Electrochemical Society,2004,151(9):A1 369-374.
  • 3LI Qi,SUN H Y,TAKEDAA Y,et al.Interface properties between a lithium metal electrode and a poly(ethylene oxide)based composite polymer electrolyte[J].J Power Sources,2001,94:201-205.
  • 4OLLIERIN X,FARIN N,ALLION F,et al.Solidstatec elelectrolyte[J].Electrochimica Acta,1998,43(10-11):1257-1262.
  • 5王占良,唐致远.一种复合聚合物电解质的性质表征[J].电源技术,2003,27(B05):169-171. 被引量:3
  • 6SUN H Y,TAKEDA Y,IMANISHI N,et al.Ferroelectric materials as a ceramic filler in solid composite polyethylene oxide-based electrolytes[J].J Electrochem Soc,2000,147:2 462-2 467.
  • 7李奇,李雅琳,夏笑虹,蒋永华.PEO基聚合物电解质PEO_x-Li(C_2F_5SO_2)_2N-BaTiO_3[J].电池,2005,35(5):348-350. 被引量:5
  • 8CROCE F,APPETECCHI G B,PERSI L,et al.Nano composite polymer electrolytes for lithium batteries[J].Nature,1998,394:456-458.

二级参考文献55

  • 1余碧涛,李福燊,仇卫华,李丽芬.锂离子电池新型电解质锂盐的研究进展[J].电池,2004,34(6):446-448. 被引量:13
  • 2刘小虹,余兰.锂离子电池电解液与安全性能[J].电池,2004,34(6):449-450. 被引量:13
  • 3[1]Chi S Kim, Seung M O. Importance of donor number in determining solvating ability of polymers and transport properties in gel-type polymer electrolytes[J]. Electrochimica Acta, 2000, 45: 2101-2109.
  • 4[2]E Quartarone, P Mustarelli, A Magistris. PEO-based composite polymer electrolytes [J]. Solid State Ionics, 1998,110: 1-14.
  • 5[3]F Croce, G B Appetecchi, L Persi, et al. Nanocomposite polymer electrolytes for lithium batteries [J]. Nature, 1998, 394: 456-458.
  • 6[4]F Croce, L Persi, F Ronci, et al. Nanocomposite polymer electrolytes and their impact on the lithium battery technology [J]. Solid State Ionics, 2000, 135: 47-52.
  • 7[5]G B Appetecchi, F Croce, L Persi, et al. Transport and interfacial properties of composite polymer electrolytes [J]. Electrochimica Acta, 2000, 45: 1481-1490.
  • 8[6]G B Appetecchi, F Alessandrini, M Carewska, et al. Investigation on lithium-polymer electrolyte batteries [J]. J Power Sources, 2001, 97-98: 790-794.
  • 9[7]R Riberiro, G G Silva, N D S Mohallem. A comparison of ionic conductivity, thermal behavior and morphology in two polyether-LiI-LiAl5O8 composite polymer electrolytes [J]. Electrochimica Acta, 2001, 46:1679-1686.
  • 10[8]J R MacCallum, S Seth. Conductivity of poly(ethylene oxide)/silica composite films containing lithium trifluorosulphonate [J]. European Polymer Journal, 2000, 36: 2337-2341.

共引文献8

同被引文献83

  • 1张广鑫,尤秋实,阚侃.锂离子电池用多孔P(VDF-HFP)基聚合物电解质膜研究进展[J].黑龙江科学,2010,1(4):41-43. 被引量:1
  • 2余碧涛,李福燊,仇卫华,李丽芬.锂离子电池新型电解质锂盐的研究进展[J].电池,2004,34(6):446-448. 被引量:13
  • 3刘永欣,付延鲍,马晓华,杨清河.LiBOB电解液在石墨负极上的成膜性能[J].电池,2006,36(5):338-340. 被引量:6
  • 4卢雷,左晓希,李伟善,刘建生,许梦清.锂离子电池PMMA-VAc聚合物电解质的制备与性质研究[J].化学学报,2007,65(6):475-480. 被引量:12
  • 5Sloop S E, Kerr J B, Kinoshita K. The role of Li-ion battery electrolyte reactivity in performance decline and self discharge [ J ]. J Power Sources, 2003,119( 1 ) : 330 - 337.
  • 6Schmidt M,Heider U, Kuehner A, et al. Lithium fluoroalkylphosphates: A new class of conducting salts for electrolytes for high energy lithiumion batteries [ J ]. J Power Sources, 2001,97/98 : 557 - 560.
  • 7Zinigrad E, Larush-Asraf L, Gnanaraj J S, et al. Calorimetric studies of the thermal stability of electrolyte solutions based on alkyl carbonates and the effect of the contact with lithium[ J ]. Thermochimica Acta, 2005,146(1) : 176 - 179.
  • 8Amatucci G G, Tarascon J M, Klein L C. Cobalt dissolution in LiCoO2- based nonaqueous rechargeable batteries [ J ]. Solid-State Ionics, 1996, 83(1) : 167 - 173.
  • 9Xu K,Zhang S S,Jow T R, et al.LiBOB as salt for lithium-ion batteries: A possible solution for high temperature operation[ J]. Electrochemical and Solid-State Letters, 2005,5( 1 ):A26- A29.
  • 10Lischka U, Wietelman U, Wegner M. Lithium bis (oxalate) borate, the production thereofand its use as a conducting salt: DE, 19829030 [ P ]. 2001 -04- 18.

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部