期刊文献+

基于BP神经网络PID自适应控制的无刷直流电动机 被引量:3

Research on the Controlling Methods of BLDCM Based on Improved BP Neural Network PID
下载PDF
导出
摘要 提出了利用变步长法和引入动量项来改进BP神经网络学习算法,有效减小了学习过程的振荡趋势,改善了收敛性,避免了学习过程陷入某些局部最小值,并将其用于在线调整无刷直流电动机控制系统的PID参数,实现具有最佳组合的PID控制。 In this paper, a novel BP neural network PID control strategy is proposed. In order to speed up the network convergence speed and avoid falling into local minimum point, a mixed method was adopted, by means of changing network iteration step-length and introducing the momentum terms. Then the algorithm is used to adjust the parameters of BLDCM PID controller so that the whole system arrives optimal.
出处 《微电机》 北大核心 2006年第8期40-42,共3页 Micromotors
关键词 神经网络 无刷直流电动机 PID控制 变步长法 动量项 Neural network Brushless DC motor PID controller Variable step size Momentum terms
  • 相关文献

参考文献3

  • 1Junghui Chen,Tien-Chih Huang.Applying neural network to on-line updated PID controllers for nonlinear process control[J].Journal of Process Control,2004,(14).
  • 2Pillay P and Krishnan R.Modeling,simulation,and analysis of permanent-magnet motor drives(part Ⅱ):The Brushless DC Motor Drive[J].IEEE Transactions on Industry Applications,1989.
  • 3Dave M,Heidar A M,Guanrong C.Design and analysis of a fuzzy proportional-integral-derivative controller[J].Elsevier Science on Fuzzy Sets and Systems,1996,79.

同被引文献13

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部