期刊文献+

粗差探测的Bayes方法 被引量:29

Bayesian Method for Detection of Gross Errors
下载PDF
导出
摘要 讨论粗差探测的Bayes方法。首先根据Bayes统计推断的基本原理,建立判断粗差的Bayes方法———后验概率法,然后针对测量平差实际,分别给出非等权独立观测条件下基于均值漂移模型和方差膨胀模型的后验概率的计算公式,最后结合一边角网算例,验证本文方法的效果。 Bayesian statistics are widely used in geodetic data processing. However, as for the detection of gross errors by the Bayesian method, there are few achievements. At present, existing methods for gross-error detection are mainly various hypothesis test based on mean shift model. Practice proved, these methods have their individual characteristics and are restricted to certain of application fields. On the whole, it appears that they have a common deficiency, that is, they have not considered or made use of the prior information of the unknown parameters. Neglecting the prior information is a waste; furthermore, it will sometimes lead to unreasonable conclusions. The Bayesian method for gross-error detection with the prior information is discussed in this paper. Firstly, based on the basic principle of Bayesian statistical inference, in the condition of general prior information, the Bayesian method for general form based on alternative distribution of observation errors-posterior probability method-for detection of gross errors is introduced. Here, we assume that observation errors come from two distrihutions, standard distribution and alternative distribution. Secondly, taking surveying adjustment practice into account, in addition, the non-informative priors, the computational formulae of posterior probability are given for mean shift modal and variance inflation model respectively under the condition of unequal weight and independent observations. Finally, as an example, a side-angle adjustment network is computed and analyzed.
出处 《测绘学报》 EI CSCD 北大核心 2006年第4期303-307,共5页 Acta Geodaetica et Cartographica Sinica
基金 国家自然科学基金项目(40474007) 国家杰出青年科学基金项目(40125013 49825107) "基础地理信息与数字化技术"山东省重点开放实验室课题(SD040202) 河南省自然科学基金项目(0511010100)
关键词 粗差 后验概率 均值漂移模型 方差膨胀模型 gross errors posterior probability mean shift model variance inflation model
  • 相关文献

参考文献11

  • 1KOCH K R. Bayesian Inference with Geodetic Appliances[M]. Berlin/Heidelberg : Springer- Verlag, 1990.
  • 2KOCH K R. Einfuhrung in die Bayes-Statistik [ M ]. Berlin Heidelberg: Springer- Verlag. 2000.
  • 3BAARDA W A. Test Procedure for Use in Geodetic Networks[J]. Ncth Geod Comm Publ Geod, New Ser, 1968,2(5):27-55.
  • 4POPE A J. The Statistics of Residuals and the Detection of Outliers [R]. Rockville: NOAA Technical Report NOS 65NGS1, 1976.
  • 5KUBIK K, WANG Y. Comparison of Different Principles for Outlier Detection [J]. Aust. J. Geod. Photogram. Surv.,1991, 54( 1 ) : 67-80.
  • 6SCHAFFRIN B, WANG Z W. Muhiplicative Outlier Search Using Hom-Blup and Equivalence Theorem [J]. Manuscripta Geodaetica, 1994, 20(1 ) :21-26.
  • 7於宗俦,李明峰.多维粗差的同时定位与定值[J].武汉测绘科技大学学报,1996,21(4):323-329. 被引量:88
  • 8HEKIMOGLU S, The Finite Sample Breakdown Points of the Conventional herative Outlier Detection Procedures [Jl. Journal of Surveying Engineering, 1997,123( 1 ) :15-31.
  • 9KOCH K R. Parameter Estimation and Hypothesis Testing in Linear Models [ M ]. Berlin/Heidelberg: Springer-Verlag,1999.
  • 10归庆明,宫轶松,李国重,李保利.基于方差膨胀模型的多个粗差的探测[J].测绘科学,2006,31(4):28-29. 被引量:12

二级参考文献11

  • 1陶本藻,王泽文.未标定的粗差检验问题[J].测绘学报,1990,19(1):15-21. 被引量:10
  • 2[2]黄维斌.近代平差理论及其应用[M].北京:解放军出版社,1991.
  • 3[4]宋力杰.粗差探测理论研究及其在GPS向量网中的应用[D].郑州:郑州测绘学院,1996.
  • 4[9]Cox D R and Weisberg S.Diagnostics for heteroscedasticity in regression[J].Biometrika 1983,70:1-10.
  • 5黄维彬,近代平差理论及其应用,1992年
  • 6晁定波,现代大地控制网优化设计理论,1991年
  • 7於宗俦,测量平差原理,1990年
  • 8黄幼才,数据探测与抗差估计,1990年
  • 9周江文,测绘学报,1989年,18卷,2期
  • 10李德仁,误差处理和可靠性理论,1988年

共引文献179

同被引文献176

引证文献29

二级引证文献102

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部