摘要
Based on the bounded property and statistics of chaotic signal and the idea of set-membership identification, we propose a set-membership generalized least mean square (SM-GLMS) algorithm with variable step size for blind adaptive channel equalization in chaotic communication systems. The steady state performance of the proposed SM-GLMS algorithm is analysed, and comparison with an extended Kalman filter (EKF)-based adaptive algorithm and variable gain least mean square (VG-LMS) algorithm is performed for blind adaptive channel equalization. Simulations show that the proposed SM-GLMS algorithm can provide more significant steady state performance improvement than the EKF-based adaptive algorithm and VG-LMS algorithm.
Based on the bounded property and statistics of chaotic signal and the idea of set-membership identification, we propose a set-membership generalized least mean square (SM-GLMS) algorithm with variable step size for blind adaptive channel equalization in chaotic communication systems. The steady state performance of the proposed SM-GLMS algorithm is analysed, and comparison with an extended Kalman filter (EKF)-based adaptive algorithm and variable gain least mean square (VG-LMS) algorithm is performed for blind adaptive channel equalization. Simulations show that the proposed SM-GLMS algorithm can provide more significant steady state performance improvement than the EKF-based adaptive algorithm and VG-LMS algorithm.
基金
Supported by the National Natural Science Foundation of China under Grant No 60572027, the Programme for New Century Excellent Talents in University of China under Grant No NCET-05-0794, the National Key Lab of Anti-Jamming Communication Foundation of UESTC of China under Grant Nos 51434110104QT2201 and 51435080104QT2201.