期刊文献+

基于Mumford-Shah正则项与L^1数据拟合的PET图像重建方法 被引量:1

PET Image Reconstruction Using Mumford-Shah Regularization Coupled with L^1 Data Fitting
下载PDF
导出
摘要 在正电子发射断层重建(PET)算法中,正则项常被用来抑制噪声。本文将Mumford-Shah(MS)正则项与最新的L1数据保真项相结合,构造出一种新的变分结构用以进行PET图像重建。为了简化计算,本文采用了Ambrosio和Tortorelli提出的Г-收敛逼近方法,将MS函式对边界积分转化为一类合适的辅助光滑函数的区域积分。在仿真测试中,将算法与传统滤波反投影(FBP)算法,最大似然法(EM),最小交叉熵法(MXE)作比较。通过实验结果的研究,对算法的效率和可行性进行了分析。 In positron emission tomography (PET) image reconstruction, regularization methods are usually considered to suppress noise effects in reconstructed images. In this paper, we model this reconstruction problem in a new variational framework where the Mumford-Shah (MS) regularization coupled with recently developed L^1 data fidelity term is adapted. In order to simplify the numerical computation, Ambrosio and Tortorelli' s Г-convergence approximation is also employed to substitute the irregular parts ( edge set) of MS functionals with the auxiliary smooth function. In numerical studies we compare our method with FBP, EM as well as MXE algorithm. Results show both feasibility and efficiency of the proposed algorithm.
出处 《信号处理》 CSCD 北大核心 2006年第6期835-839,共5页 Journal of Signal Processing
关键词 图像重建 Mumford—Shah(MS)正则项 正电子发射断层 Г-收敛 image reconstruction Mumford-Shah regularization positron emission tomography Г-convergence
  • 相关文献

参考文献14

  • 1D. Mumford and J. Shah," Optimal approximations by piecewise smooth functions and associated variational problems," Communications on Pure and Applied Mathematics, vol.42, pp. 577-684, 1989.
  • 2J. A. Sethian, "Level Set Methods: Evolving Interfaces in Geometry, Fluid Mechanics, Computer Vision and Materials Seienees," Cambrigde, U. K. : Cambrige Univ. Press, 1996.
  • 3H. Feng,D. A, Castanon and W. C. Karl, "Tomographic reconstruction using curve evolution," Proc. IEEE Computer Vision and Pattern Recognition, vol. 1, pp. 1361 -1366, 2000.
  • 4D. Yu and J. Fessler, "Edge-preserving tomographic reconstruction with nonlocal regularization," IEEE, Trans.Med. Imag ,vol. 21, no. 2, pp. 159-173, 2002.
  • 5R. Whitaker and V. Elangovan, "A direct approach to estimating surfaces in tomographic data," Journal of Medical Image Analysis, vol. 6 ,no. 3 ,pp. 235 - 249, 2002.
  • 6C. V. Alvino and A. J. Yezzi, Jr," Tomographic reconstruction of piecewise smooth images" Proc. IEEE Computer Vision and Pattern Recognition,vol. 1 ,pp. 576 -581,2004.
  • 7L. Ambrosio and V. M. Tortorelli," Approximation of functionals depending on jumps by elliptic functionals via iconvergence," Communications on Pure and" Applied Mathemathics,vol. XLⅢ,pp. 999 - 1036,1990.
  • 8M. Nikolova, " Minimizations of cost-functions involving nonsmooth data fidelity ,terms," SIAM J. Numer. Anal,vol. 40, pp. 965 - 994, 2002.
  • 9J. A. Fessler, "Penalized weighted least-squares image reconstruction for positron emission tomography," IEEE Trans. Med. Imag,vol. 13 ,pp. 290 - 300,1994.
  • 10C. Riddel, H. Benali and I. Buvat, "Diffusion regularization for iterative reconstruction in emission tomography,"IEEE Trans,Nucl. Sci, vol. 51, no. 3,pp. 712 - 718,2004.

同被引文献24

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部