期刊文献+

分数傅里叶变换域上含噪语音的联合滤波 被引量:3

Combine Filtering in Fractional Fourier Domains for noisy speech
下载PDF
导出
摘要 噪声是影响语音识别和说话人识别性能的主要因素,目前常用的降噪方法多是针对平稳噪声的,而针对非平稳噪声的降噪方法很少。而在实际环境中,通常的噪声是非平稳的。本文将含噪语音变换到分数傅立叶域上,提出了一种在分数傅立叶变换域上进行线性最优滤波和中值滤波的联合滤波降噪方法。实验结果表明,该方法对含非平稳噪声的语音的降噪效果明显优于维纳滤波,能够有效地降低非平稳噪声的影响,提高非平稳噪声环境下的语音识别和说话人识别性能。 Many speech enhancement algorithms are implemented to reduce the stationary noise componet embedded in a speech signal. Few algorithms are implemented to reduce the non-stationary noise though the noise in the real environment is non-stationary usually. A new algorithms which combine linearity optimal filtering and median filtering in fractional fourier domains is presented. The experiment showed that it could improve Signal-to-Noise superior to wiener filtering obviously under the coloured noise. It has wide application prospects in speech recognition and speaker recognition.
出处 《信号处理》 CSCD 北大核心 2006年第6期899-902,共4页 Journal of Signal Processing
基金 教育部科学技术重点项目(No:03082) 国家自然基金(No:60472058)资助
关键词 语音增强 分数傅里叶变换 最优线性滤波 speech enhancement fractional fourier transform linearity optimal filtering
  • 相关文献

参考文献10

  • 1Zhong Lin, Rafik Goubran. Musical Noise Reduction in Speech Using Two-Dimensional Spectrogram Enhancement. Proceedings of HAVE 2003, 2003:61 - 64.
  • 2I. Y. Soon, S. N. Koh. Speech Enhancement Using 2-D Fourier Transform. IEEE Transactions on Speech and Audio Processing,2003 ; 11 (6) :717 - 724.
  • 3V. Namias. The fractional order Fourier transform and its application to quantum mechanics. J. Inst. Math. Appl,1980 ;25:241 - 265.
  • 4A. W. Lohmann, B. H. Softer, Relationships between the Radon-Wigner and fractional Fourier transforms, Opt. Soc.Amer. 1994;11:1798 - 1801.
  • 5H. M. Ozaktas, Z. Zalevsky, M. A. Kutay. The Fractional Fourier Trasform. New York: wiley ,2001.
  • 6M. Aiper Kutay, Haldun M. Ozaktas, Orhan Arikan and Levent Onural. Optimal Filtering in Fractional Fourier Domains. IEEE Transactions on signal Processing, 1997;45(5) :1129 - 1142.
  • 7LJubisa Stankovic, Tatiana Alieva, Martin J. Bastiaans.Time-frequency signal analysis based on windowed fractional Fourier transform. Signal Processing, 2003; 83:2459 - 2468.
  • 8C. C. Shih. Fractionalization of Fourier transform. Opt.Commun, 1995 ; 118:495 - 498.
  • 9Milner, B.P., Vaseghi, S.V. Comparison of some noisecompensation methods for speech recognition in adverse environments,Vision, Image and Signal Processing, IEE Proceedings 1994 141 (5) :280 - 288.
  • 10ETSI ES 202 050 Ver. 1.1.3 ( 2003 - 11 ) Speech Processing Transmission and Quality Aspects (STQ) ; Distributed speech recognition; Advanced feature extraction algorithm, November 2003.

同被引文献13

  • 1李靖,王树勋,汪飞.基于分数阶傅里叶变换的chirp信号时频分析[J].系统工程与电子技术,2005,27(6):988-990. 被引量:31
  • 2马明,沈越泓.超宽带脉冲无线通信系统中的同步技术[J].南京邮电大学学报(自然科学版),2006,26(2):51-54. 被引量:1
  • 3WU Wenrong,CHEN Pocheng.Subband Kalman Filtering for Speech Enhancement[J]. IEEE Transactions on circuits and systems,2001,45(8).
  • 4Soo C P, Wen L H, Ding J J. Discrete fractional Fourier transform based on new nearly tridiagonal commuting matrices[J].IEEE Transactions on Signal Processi ng,2006,54(10):3815-3828.
  • 5Almeida L B.The fractional Fourier transform and time-frequency representations[J].IEEE Trans. on Signal Processing,1994, 42(11):3084-3091.
  • 6Namias V. The fractional Fourier transform application in quantum mechanics[J].lnst Application, 198(I,25 ( 1 ):241-265.
  • 7and its Maths. Xu Huifa, Liu Feng.Spectrum Estimation of Pseudorandom Nonuniformly Sampled Signals in the Fractional Fourier Transform Domain[J].IEEE Transactions Signal Processing, 2010,48(7):276-279.
  • 8Zhang L P, Wu K, Zhong Y F,etc.A new subpixed mapping algorithm based on a BP neural network with an abservation model[J].Neurocomputi ng,2008,107(1):111-119.
  • 9吴伟,蔡培升.基于MATLAB的小波去噪仿真[J].信息与电子工程,2008,6(3):220-222. 被引量:73
  • 10黄文玲,杨鹏.基于扫频滤波器线性调频信号的滤波算法[J].同济大学学报(自然科学版),2010,38(11):1656-1658. 被引量:6

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部