摘要
提出一种本体学习模型,分析了模型实现中的关键步骤.采用机器学习技术半自动地构建本体,用Bisecting K-means算法和标准的K-means算法对模型进行了测试.实验结果表明,Bisecting K-means算法产生的本体概念的层次更加精炼,时间复杂度较小,特别适合用于处理大型数据集.
This paper proposes an ontology learning model with several key steps in implementing the model. The model uses machine learning technique to construct ontology semi-automatically. Based on the model, Bisecting K-means algorithm and standard K-means algorithm are tested. With Bisecting K-means algorithm, experiments show that the hierarchy of ontology concept is more refitted and has lower time-complexity. Bisecting K-means algorithm is especially suited for handling large data sets.
出处
《河南大学学报(自然科学版)》
CAS
北大核心
2006年第4期100-102,共3页
Journal of Henan University:Natural Science
基金
河南省自然科学基金项目(0511011400)
河南省教育厅自然科学基金项目(2004520014)
关键词
本体
本体学习
知识获取
ontology
ontology learning
knowledge acquisition