期刊文献+

一种本体学习模型的设计与实现 被引量:4

Design and Implementation for Ontology Learning Model
下载PDF
导出
摘要 提出一种本体学习模型,分析了模型实现中的关键步骤.采用机器学习技术半自动地构建本体,用Bisecting K-means算法和标准的K-means算法对模型进行了测试.实验结果表明,Bisecting K-means算法产生的本体概念的层次更加精炼,时间复杂度较小,特别适合用于处理大型数据集. This paper proposes an ontology learning model with several key steps in implementing the model. The model uses machine learning technique to construct ontology semi-automatically. Based on the model, Bisecting K-means algorithm and standard K-means algorithm are tested. With Bisecting K-means algorithm, experiments show that the hierarchy of ontology concept is more refitted and has lower time-complexity. Bisecting K-means algorithm is especially suited for handling large data sets.
出处 《河南大学学报(自然科学版)》 CAS 北大核心 2006年第4期100-102,共3页 Journal of Henan University:Natural Science
基金 河南省自然科学基金项目(0511011400) 河南省教育厅自然科学基金项目(2004520014)
关键词 本体 本体学习 知识获取 ontology ontology learning knowledge acquisition
  • 相关文献

参考文献6

  • 1Berners-Lee T, Hendler J, Lassila O. The Semantic Web [J]. Scientific American, 2001,284(5):34-43.
  • 2Borst W N. Construction of Engineering Ontologies for Knowledge Sharing and Reuse [D]. Enschede: University of Twente, 1997: 56-71.
  • 3Maedche A, Staab S. Ontology Learning for the Semantic Web [J]. IEEE Intelligent Systems: Special Issue on the Semantic Web, 2001,16(2):72-79.
  • 4Steinbach M, Karypis G, Kumar V. A comparison of document clustering techniques [R]. Minnesota University, 2000:8-19.
  • 5Ian H. Witten, Eibe Frank. Data Mining: Practical Machine Learning Tools and Techniques [M]. 2nd Edition. San Francisco: Morgan Kaufmann, 2005: 253-261.
  • 6Lewis D. Reuters-21578 text categorization test collection [DB/OL]. [2004-05-14] http://www.daviddlewis.com/resources/testcollections/reuters21578/.

同被引文献40

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部