期刊文献+

多光谱遥感蚀变信息提取的新方法应用研究 被引量:7

Application of new multi-spectrum remote sensing alteration information extraction method
下载PDF
导出
摘要 选择青海太子沟矿区及其外围地区作为研究区,引入支持向量机(SVM)新技术方法,依据U SG S标准光谱曲线来构造特征矩阵,采用LOO(L eave-O ne-O u t)算法来选择核函数及其参数,通过选取一个包括矿化区和非矿化区的训练数据集,直接从ETM多光谱遥感数据中提取出与矿化有关的遥感蚀变信息。经过野外检查验证,本次研究成果取得了良好的实际应用效果。 Taizigou mine and its surrounding areas were selected as the research areas and a new supporting vector method(SVM) was introduced to configure matrix of structure character according to USGS standard spectrum and core function and its parameters were chosen by application of LO0 (Leave-One-Out) arithmetic. The remote sensing alteration information associated with mineralization was extracted straight from ETM multi-spectrum remote sensing data by choosing a training data set including that of mineralization area and barren area. The research has received good result through field confirmation.
出处 《矿产与地质》 2006年第6期656-658,共3页 Mineral Resources and Geology
基金 中国地质调查局国土资源大调查项目(200220140001)资助
关键词 多光谱遥感 蚀变信息提取 支持向量机 ETM数据 LOO算法 multi-spectrum remote sensing, alteration information extraction, supporting vector machine (SVM), ETM data, LOO arithmetic
  • 相关文献

参考文献6

  • 1边肇棋 张学工.模式识别[M].北京:清华大学出版社,2000..
  • 2Refaat M Mohamed, Aly A Farag. Parameter estimation for Bayesian classification Of multispectral data[OL]. www. cvip.uofl. edu.
  • 3骆剑承,周成虎,梁怡,马江洪.支撑向量机及其遥感影像空间特征提取和分类的应用研究[J].遥感学报,2002,6(1):50-55. 被引量:110
  • 4洪金益,姚学恒,潘冬.基于SVM遥感图像矿化信息提取试验[J].矿业研究与开发,2004,24(5):63-65. 被引量:4
  • 5Joachima. Making large-scale SVM learning practical. Adances in kernel methodssupport vector learning[M]. MA:MIT Press,1998:169-184.
  • 6B E Boser,I M Guyon,V IV Vapnik. A training algorithm for optimal margin classification. Proc 5^th annual ACM workshop on computational learning theory [M]. Pittsburgh; ACM Press,1992. 144-152.

二级参考文献10

  • 1边肇祺 张学工.模式识别[M].北京:清华大学出版社,1999.282-283.
  • 2Vapnik V N. The Nature of Statistical Learning Theory[M]. NewYork :Springer Verlag,1995.
  • 3Fabio Roli, Giorgio Fumera, Support Vector Machines for Remote-Sensing Image Classification, Dept.of Electronic Eng., University of Cagliari, Piazza d'Armi,09123,Cagliari, Italy,http://www.diee.unica.it.
  • 4沈培华,等.遥感图像分类中三种分类算法应用[A].2002遥感科技论坛.北京:中国宇航出版社,2002.
  • 5Burgers J C .A tutorial on support vector machines for pattern recognition, Microsoft rsearch, Data Mining and Knowledge Discovery[M]. 1998,2:121~167.
  • 6Steve R Gunn, J S kandola,Structural Modelling with Sparse Kernels, Image, Speech and Electronics and Computer Science University of Southampton[J],U.K, 12 MARCH 2001.
  • 7Edgar e Osuna, Robert Freund and Federico Girosi.Support Vector Machines: Training and Applications[J]. C.B.C.L Paper,1997,(144).
  • 8Joachims T. Making large-scale support vector machine learning practical. In Advances in Kernel Methods: Support Vector Learning[M]. B. Sch lkopf, C.J.C. Burges, 1998.
  • 9LOOMS. A leave-one-out model selection software based on BSVM, http://www.csie.ntu.edu.tw/~cjliin/looms.
  • 10骆剑承,周成虎,梁怡,马江洪.支撑向量机及其遥感影像空间特征提取和分类的应用研究[J].遥感学报,2002,6(1):50-55. 被引量:110

共引文献176

同被引文献102

引证文献7

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部