期刊文献+

引力向量及梯度张量在坐标系之间的变换 被引量:2

Computer-Aided Transformation of Gravity Vector and Its Gradient Tensor Between Coordinate Systems
下载PDF
导出
摘要 引力向量和引力梯度张量在局部和全局坐标系间的转换过程是对卫星重力梯度测量进行模拟研究的主要手段和重要步骤。提出了利用计算机符号运算辅助推导该转换过程的新思想。首先通过对该过程进行分析,指出其运算繁琐复杂;然后通过对理论推导过程的分解,确定了引力向量和引力梯度张量在局部和全局坐标系之间转换的各关键步骤;并借助于计算机符号运算实现了这一转换过程的计算机推演,成功地得到了完整的符号公式结果。所编写的符号推演程序在多台计算机的多种平台上获得了一致的结果。实验结果表明,计算机符号运算对于公式体系繁杂的卫星重力学理论研究来说具有极大的增效作用。 Aiming at the implementation of transformation of gravity vector as well as its gradient tensor between local and global coordinate systems a novel method was proposed which took advantage of computer symbolic operation in conventional derivation. Analysis of the trarisformation process showed that though characterized by complex and complicated operation, it was still one key process for the sirhulation research of satellite gravity gradient survey Therefore the conventional theoretical derivation of the transformation of the gravity vector and its gradient tensor between local and global coordinate systems was firstly analyzed and taken apart, and then with the aid of computer symbolic operation, the derivation of the process was also completed on computer. The symbolic operation program had been tested on different computer platforms and consistent result had also been acquired. Results indicate that the symbolic operation wais a helpful efficiency-amplifier for satellite gravity research that was characterized by a complicated formula system.
出处 《测绘科学技术学报》 北大核心 2006年第6期425-428,共4页 Journal of Geomatics Science and Technology
基金 全国优秀博士学位论文作者专项资金(200344) 中科院动力大地测量学重点实验室(DGLIGG)开放基金(L06-06 L04-03) 国家自然科学基金(40674039)
关键词 重力梯度测量 引力向量 引力梯度张量 计算机符号运算 gravity gradient survey gravity vector gravity gradient tensor computer symbolic operation
  • 相关文献

参考文献11

  • 1[1]Austen G,Grafarend E W,Reubelt T.Analysis of the Earth's Gravitational Field from Semi-Continuous Ephemeris of a Low Earth Orbiting GPS-Tracked Satellite of Type CHAMP,GRACE or GOCE[R].Geodetic Institute,University of Stuttgart,2002.
  • 2[2]Ditmar P,Klees R,Kostenko F.Fast and accurate computation of spherical harmonic coefficients from satellite gravity gradiometry data[J].Journal of Geodesy,2003,76:690-705.
  • 3[3]HUANG Zhong-lin,HUANG Jing.MATLAB符号运算及应用[M].北京:国防工业出版社,2004:15-180.
  • 4[4]Koop D,Stelpstra.On the computation of the gravitational potential and its first and second order derivatives[J].Manuscripta Geodaetica,1989,(14):373-382.
  • 5[2]张传定.卫星重力测量--基础、模型化方法与数据处理算法[D].郑州:信息工程大学测绘学院,2000.
  • 6[7]Belikov M V,Taybatorov K A.An efficient algorithm for computing the Earth's gravitational potential and its derivatives at satellite altitudes[J].Manuscripta Geodaetica,1992,(17):104-116.
  • 7[8]Arabelos D,Tscherning C C.Improvements in height datum transfer expected from the GOCE mission[J].Journal of Geodesy,2001,75:308-312.
  • 8[9]Oberndorfer H,Müller.GOCE closed loop simulation[J].Journal of Geodynamics,2002,33:53-63.
  • 9[10]Pail R,Plank G.Assesment of three numerical solution strategies for gravity field recovery from GOCE satellite gravity gradiometry implemented on a parallel platform[J].Journal of Geodesy,2002,76:462-474.
  • 10[11]Rummel R,et al.Dedicated gravity field missions-principles and aims[J].Journal of Geodynamics,2002,33:3-20.

共引文献12

同被引文献27

引证文献2

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部