期刊文献+

人体股骨冲击特性数值模拟 被引量:3

Numerical modeling of impact character in human femur
下载PDF
导出
摘要 目的:考察人体步态运动过程中冲击载荷作用时的应力和变形分布。方法:①2005-08-31在徐州医学院附属医院通过美国GE公司HispeedNx/i型双层螺旋CT对一志愿者(年龄28岁,身高173cm,体质量60kg)的股骨进行扫描,获得DICOM格式图像数据,采用逆向工程方法生成实体模型。②将三维模型导入有限元分析软件(Ansys8.0),单元选择Solid45,骨密质的弹性模量选择为16.7GPa,泊松比0.3。③对股骨进行远端固定,模拟股骨在膝关节完全固定情况(人体站立相)下的静力影响,同时采用冲击载荷对股骨进行试验,比较冲击载荷对股骨的不同作用效果,以及股骨在冲击载荷作用下的力学特性。结果:①在200N载荷作用下静载的峰值应力大于冲击载荷作用(847.451MPa比308.511MPa),从分布区域看,静载的峰值应力主要集中在股骨干部分,位置接近于远端1/3处,而冲击载荷峰值分布于股骨颈周围区域。②股骨在受到2546.04N冲击载荷作用后,股骨颈下部是应力响应的敏感区域,随着与冲击区域距离的增加,应力响应逐渐变小,除股骨近端1/3处外其他各处响应均迅速下降。③应力值随着冲击载荷的增大而增大,载荷为2063.88N,2546.04N时最大应力区均集中在股骨颈的下侧面,但当冲击载荷达到2728.32N时最大应力区超出颈部区域,出现在小转子外侧的股骨干上,且应力分布峰值区域变大。结论:①在低冲击载荷作用下,高应力区出现在股骨颈附近区域,随着载荷的增加,破坏区域从单纯的骨股颈区域扩展到了小转子外下侧的股骨干区域。②对比临床,股骨颈和小转子外下侧股骨干部分也是可能导致骨折的区域。 AIM: To determine the stress and strain distribution of femur under impact force during human gait cycle. METHODS:①A volunteer (28 years, 173 cm, 60 kg) femur was scanned by double-helix CT of HispeedNx/i type made in GE co.ltd USA in Affiliated Hospital of Xuzhou Medical College on August 31^st, 2005. Entity model was developed through DICOM image data gain by scan. ②The model was opened in finite element software (Ansys 8.0) and solid45 was selected as element. Elastic module of cortical bone was 16.7 GPa, and poisson's ratio was 0.3. ③The distal end of femur was fixed to simulate the impact of static force under standingman condition and femur was measured under impact force. Different effects of impact force on femur and the mechanism character of femur under impact force were compared. RESULTS: ①The peak stress under 200 N static force more than impact force (847.451 Mpa vs 308.511 MPa). The stress range of static concentrated at femur location adjacent to 1/3 distal end. The stress range under impact force was distributed in femur neck. ②Under 2 546.04 N impact force, femur neck was the sensitivity area of stress response. The stress response decreased with distance increasing to impact region, except 1/3 proximal end of femur, ③The magnitude of stress increased with impact force enhanced. Max-stress range concentrated underside of femur neck under 2 063.88 N and 2 546.04 N impact force. However, the max- stress range, under 2 728.32 N impact force, concentrated lateral shaft of femur of the lesser trochanter and range larger than other. CONCLUSION: ①High stress range assembles femur neck under small impact force, and breakage district changes from simple femur neck into inferolateral shaft of femur of the lesser trochanter with the increase of force. ② According to the clinical experience, the femur neck and inferolateral shaft of femur of the lesser trochanter are all the catagmatic range.
出处 《中国临床康复》 CSCD 北大核心 2006年第45期114-117,共4页 Chinese Journal of Clinical Rehabilitation
基金 国家自然科学基金重点资助项目(50535050)~~
  • 相关文献

参考文献13

  • 1Wang JL,Chung CH,Chiang CK.How the external impact energy affects the internal kinetics of knee joint? The comparison of porcine and human knee joint.ASME Interantional Mechanical Engineering Congress and R&D Expo (IMECE) 2003;55:191-2
  • 2Ewers BJ,Garcia JJ,Altiero NJ,et al.Axially compressive impacts to the human tibiofemoral joint.Am Soc Mechanical Eng 1999;42:673-4
  • 3Abdel-Rahman EM,Hefzy MS.Three-dimensional dynamic behaviour of the human knee joint under impact loading.Med Eng Phys 1998;20(4):276-90
  • 4Dakin GJ,Arbelaez RA,Molz FJ 4th,et al.Elastic and viscoelastic properties of the human pubic symphysis joint:effects of lateral impact joint loading.J Biomech Eng 2001;123(3):218-26
  • 5Yang JK,Kajzer J.Computer simulation of impact response of the human knee joint in car-pedestrian accidents.Doktorsavhandlingar vid Chalmers Tekniska Hogskola 1997;1320:15
  • 6Wei HW,Sun SS,Jao SH,et al.The influence of mechanical properties of subchondral plate,femoral head and neck on dynamic stress distribution of the articular cartilage.Med Eng Phys 2005;27(4):295-304
  • 7El'Sheikh HF,MacDonald BJ,Hashmi MS.Finite element simulation of the hip joint during stumbling:a comparison between static and dynamic loading.J Mater Process Technol 2003;143-144:249-55
  • 8Qi G,Mouchon WP,Tan TE.How much can a vibrational diagnostic tool reveal in total hip arthroplasty loosening.Clin Biomech 2003;18 (5):444-58
  • 9Fukuda Y,Takai S,Yoshino N,et al.Impact load transmission of the knee joint-influence of leg alignment and the role of meniscus and articular cartilage.Clin Biomech (Bristol,Avon)2000;15(7):516-21
  • 10尚鹏,闫贺庆,王成焘.基于个体材料和几何特性的人体股骨振动模态分析[J].上海交通大学学报,2003,37(z1):99-101. 被引量:6

二级参考文献45

  • 1[1]Doherty W P, Bovill E, Wilson E. Evaluation of the use of resonant frequencies to characterize physical properties of human long bones[J]. Journal of Biomechanics, 1974, 7:559-561.
  • 2[2]Saha S, Lakes R S. The effect of soft tissue on wave propagation and vibration tests for determining the in vivo properties of bones [J]. Journal of Biomechanics, 1977,10:393-401.
  • 3[3]Campbell J N, Jurist J M. Mechanical impedance of the femur: a preliminary report [J]. Journal of Biomechanics, 1987,14 : 319- 322.
  • 4[4]Khalil T B, Viano D C, Tuber L A. Vibrational characteristics of the embalmed human femur[J]. Journal of Sound and Vibration, 1981, 75:417-436.
  • 5[5]Thomas A M C, Luo D Z, Dunn J W. Response of human femur to mechanical vibration[J].Journal of Biomedical Engineering,1991,13:58-60.
  • 6[6]Denayer I,Van der Perre G.Detection of hip stem losening using vibration analysis[J].Journal of Biomechanics,1998,31:165-175.
  • 7Maloney WJ.Orthopaedic crossfire-larger femoral heads:a triumph of hope over reason.In opposition.J Arthroplasty,2003,18(3 Suppl1 ):85-87.
  • 8Gross AE,Dust WN.Acute polyethylene fracture in an uncemented acetabular cup.Can J Surg,1997,40:310-312.
  • 9Kurtz SM,Rimnac CM,Santner TJ,et al.Exponential model for the tensile true stress-strain behavior of as-irradiated and oxidatively degraded ultra high molecular weight polyethylene.J Orthop Res,1996,14:755-761.
  • 10Cheal EJ,Spector M,Hayes WC.Role of loads and prosthesis material properties on the mechanics of the proximal femur after total hip arthroplasty.J Orthop Res,1992,10:405-422.

共引文献26

同被引文献17

  • 1全仁夫,杨迪生,王以进.骶骨骨折的动态冲击试验研究[J].中国临床解剖学杂志,2005,23(2):188-192. 被引量:5
  • 2欧阳钧,杨桂通,赵隆茂,赵永刚,朱青安,钟世镇.人体腰椎松质骨冲击响应的实验研究[J].生物医学工程学杂志,1996,13(1):29-33. 被引量:3
  • 3Borrelli J Jr. Ellis E. Pilon fractures: assessment and treatment. Orthop Clin North Am, 2002. 33: 231-245.
  • 4Hnbatho MC, Darmana R, Pastor P. el al. Development of a three-dimensional finite element model of a human tibia using experimental modal analysis. J Biomech, 1991, 24: 371-383.
  • 5Williams Jl, l,ewis Jl, Properties and an anisotropic model of cancellous bone from the proximal tibial epiphysis. J Biomech Eng, 1982, 104: 50-56.
  • 6Anderson DD, Goldsworthy JK, Shivanna K. et al. lntra-articular contact stress distributions at the ankle throughout stance phase-patient-specific finite element analysis as a metric of degenera- tion propensity. Biomech Model Meehanobiol, :2006, 5: 82-89.
  • 7Bartleltt CS, D'Amato M J, Weiner LS. Fraclures of the tibial pilon. Skeletal Trauma. 1998. 2: 2295-2325.
  • 8Takebe K, Nakagawa A, Minami H. et al. Role of the fibula in weight-bearing. Clin Orthop Relat Res, 1984( 184): 289-292.
  • 9Riiedi TP. Allgower M, Fractures of the lower end of the tibia into the ankle-ioint. Injury, 1969, Ⅰ: 92-99.
  • 10Topliss C J, Jackson M. Atkins RM. Anatomy of pilon fractures of the distal tibia. J Bone Joint Surg(Br), 2005, g7: 692-697.

引证文献3

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部