期刊文献+

我国科技投入效率、效果评价研究 被引量:27

On the Efficiency and Effect of China's Science & Technology Investment
下载PDF
导出
摘要 本文分别利用数据包络分析(DEA)方法和格兰杰(Granger)因果检验法对我国1991—2004年科技投入的效率、效果进行测度。科技投入效率的实证结果表明,如果用技术进步为社会经济发展带来的效应作为衡量科技投入产出的指标,我国科技投入总体上是相对有效的,只是在投入规模上还需进行调整,以提高规模效率,进而提高科技投入的总效率;科技投入效果的实证结果表明,我国科技投入是有效的,对经济增长的贡献明显(包括经济增长数量和质量);科技投入是我国经济增长的格兰杰原因,即我国科技投入对经济增长的影响效果明显,这说明我国科技投入已经成为促进经济增长的重要手段。 The efficiency and effects of China' s Science & Technology (S&T) Investment from 1991 to 2004 is tested by the methods of Data Envelopment Analysis and Granger test of causality respectively. The results of efficiency test show that China's S&T investment is effective on the whole, if using the impacts of technological advance on the economic development as the indicator of the efficiency; but the scale of S&T investment should be adjusted to improve the efficiency. The results of S&T effect test indicate that China' s S&T investment has contributed a lot to economic growth, in terms of both economic quantity and quality; and China' s S&T investment does Granger-cause of China' s economic growth. This is a evidence which indicate that China's S&T investment has played a important role in promoting China's economic development.
作者 贺德方
出处 《情报学报》 CSSCI 北大核心 2006年第6期740-748,共9页 Journal of the China Society for Scientific and Technical Information
关键词 科技投入 相对效率 数据包络分析 格兰杰因果检验 S&T investment, relative efficiency, data envelopment analysis, Granger test of causality.
  • 相关文献

参考文献12

二级参考文献16

  • 1[1]国家统计局.2002年全国投入产出调查培训教材[M].北京:中国统计出版社,2002.6-11.
  • 2Granger C W J. Investigating causal relations by econometric models and cross-spectral methods [J]. Econometrica, 1969,37; 424 - 438.
  • 3Granger C W J. Testing for causality: A personal viewpoint[J]. J Economic Dynamics and Control, 1980, 2; 329-352.
  • 4Ohanian L E. The spurious effects of unit roots on vectorautor egressions: A Monte Carlo study [J]. J Econometrics.1988, 39:251-266.
  • 5Toda H Y, Phillipp C B. The spurious effect of unit roots on vector autoregressions [J]. J Econometrics, 1993, 59: 229-255.
  • 6He Zonglu, Maekawa Koichi. On spurious Granger Causality[J]. Economics Letter, 2001, 73: 307-313.
  • 7Caporale G M, Pittis N. Causality and forecasting in incomplete systems [J]. J Forecasting, 1997, 16: 425-437.
  • 8Hassapis C, Pittis N, Prodromidis K. Unit roots and Granger causality in the EMS interest rates: The German dominance hypothesis revisited [J]. J Int Money and Finance. 1999, 18: 47-73.
  • 9Clark T. Finite-sample properties of tests for equal forecast accuracy [J]. J Forecasting, 2000, 18: 489- 504.
  • 10Hurlin C, Venet B. Granger causality tests in panel data models with fixed coefficients [A]. 12th (EC)^2 Conf on Causality and Exogeneity in Econometrics [C]. Louvain-la-Neuve, 2001.

共引文献268

同被引文献272

引证文献27

二级引证文献176

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部