期刊文献+

用于多目标优化的蚁群算法的构建及其应用 被引量:15

Ant colony optimization approach to the solution of multi-objective optimization problems
下载PDF
导出
摘要 从蚁群的生物学行为出发,将成群募集和海量募集两种机制融入蚁群算法,并针对多目标优化的特性,综合考虑解的被支配度和分散度,抽提出一种启发式规则,用以评价食物源的优劣,进而构建多目标连续蚁群优化算法(MO-CACO)。通过两个多目标典型函数的优化测试,验证了MO-CACO具有较强的多目标全局寻优能力,且稳健性良好,所求得的最优解集的多目标值能均匀地逼近Pareto最优前沿的各部分。将MO-CACO用于二甲苯异构化装置的操作优化,取得了满意的结果,MO-CACO可为化工过程多目标决策提供支持。 In this article, a multi-objective continuous ant colony optimization (MO-CACO) for solving multi-objective optimization problem is proposed, which is based on the biology behavior of ant colony foraging and the heuristic rules for appraising the quality of food source. The mechanisms of group recruitment and mass recruitment, which were used to guide the ant colony to search the best solution in the feasible region, were embedded to the ant colony system. The proposed algorithm was applied to two benchmark functions to illustrate its effectiveness. The results demonstrated that MO-CACO had better performance for achieving global optimal and the obtained multi-objective values can unifonnly approximate every part of Pareto-optimal front. Further, it was successfully applied to the optimization of the equipment of xylene isomerization, and the satisfying results were obtained, which can be used for further decision-making.
出处 《高技术通讯》 CAS CSCD 北大核心 2006年第12期1241-1245,共5页 Chinese High Technology Letters
基金 国家自然科学基金(20276063)资助项目.
关键词 多目标优化 PARETO最优前沿 蚁群算法 成群募集 海量募集 二甲苯异构化 multi-objective optimization, Pareto-optimal front, ant colony optimization, group recruitment, mass recruitment, isomerization of xylene
  • 相关文献

参考文献12

  • 1Fonseca C F,Fleming P J.Genetic algorithms for multi-objective optimization:formulation,discussion and generalization.In:Proceedings of the Fifth International Conference on Genetic Algorithms.San Mateo,CA:Morgan Kaufmann Publisher,1993.416-423
  • 2Srinivas N,Deb K.Multi-objective function optimization using nondominated sorting genetic algorithms.Evolutionary Computation,1995 2(3),221-248
  • 3Colorni A,Dorigo M,Maniezzo V.Distributed optimization by ant colonies.In:Proceedings of the European Conference on Artificial Life.Paris,France:Elsevier Publisher,1991.134-142
  • 4汪镭,吴启迪.蚁群算法在连续空间寻优问题求解中的应用[J].控制与决策,2003,18(1):45-48. 被引量:100
  • 5贺益君,陈德钊,吴晓华.杂交蚁群系统的构建并用于反应动力学参数的估计[J].化工学报,2005,56(3):487-491. 被引量:11
  • 6Kindt V T,Monmarché N,Tercinet F,et al.An Ant Colony Optimization algorithm to solve a 2-machine bicriteria flowshop scheduling problem.European Journal of Operational Research,2002,142(2):250-257
  • 7贺益君,陈德钊.连续约束蚁群优化算法的构建及其在丁烯烷化过程中的应用[J].化工学报,2005,56(9):1708-1713. 被引量:12
  • 8Beckers R,Goss S,Deneubourg J L,et al.Colony size,communication and ant foraging strategy.Psyche,1989,96:239-256
  • 9Deb K.Multi-objective genetic algorithms:problem difficulties and construction of test problems.Evolutionary Computation,1999,7(3):205-230
  • 10Zitzler E,Deb K,Thiele L.Comparison of multiobjective evolutionary algorithms:empirical result.Evolutionary Computation,2000,8(2):173-195

二级参考文献56

  • 1[1]Dorigo M, Gambardella L M. Ant colony system: A cooperative learning approach to the travelling salesman problem[J]. IEEE Trans Evol Comp,1997,1(1):53-66.
  • 2[2]Dorigo M, Maniezzo V, Colorni A. Ant system: Optimization by a colony of cooperating agents[J]. IEEE Trans SMC: Part B,1996,26(1):29-41.
  • 3[3]Gambardella L M, Dorigo M. Solving symmetric and asymmetric TSPs by ant colonies[A]. Proc IEEE Int Conf Evol Comp[C]. Piscataway, 1996.622-627.
  • 4[4]Boryczka U, Boryczka M. Generative policies in ant systems for scheduling[A]. 6th European Congr Intell Tech Soft Comp[C]. Bruxelles,1998.1:382-386.
  • 5[5]Boryczka U. Learning with delayed rewards in ant sys-tems for the job-shop scheduling problem[A]. First Int Conf Rough Sets Current Trends Comp[C]. Bruxelles,1998.271-274.
  • 6[6]Gambardella L M, Taillard E D, Dorigo M. Ant colonies for the quadratic assignment problem[J]. J Oper Res Soci,1999,50(2):167-176.
  • 7[7]Maniezzo V,Dorigo M,Colorni A.Algodesk:An experimental comparison of eight evolutionary heuristics applied to the quadratic assignment problem[J]. European J Oper Res,1995,81(1):188-204.
  • 8[8]Maniezzo V. Exact and approximate nondeterministic tree-search procedures for the quadratic assignment problem[J]. Infor J Comp,1999,11(4):358-369.
  • 9[9]Maniezzo V, Colorni A. Ant system applied to the quadratic assignment problem[J]. IEEE Trans Knowl Data Eng,1999,11(5):769-778.
  • 10[10]Leguizamon G, Michalewicz Z. A new version of ant system for subset problems[A]. Proc Congr Evol Comp[C]. Darmstadt,1999.2:1459-1464.

共引文献121

同被引文献113

引证文献15

二级引证文献76

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部