摘要
使用对极约束和同形映射两种几何约束,通过采用面积检测、一致性约束误差检测、概率筛选规则和对称优化等策略,成功地实现了曲面场景图像的特征点匹配。该方法未使用任何与灰度相关的信息和与场景相关的约束,极大地提高了方法的实用性和鲁棒性。整个匹配过程快速有效,并在不同的弱标定关系已知的真实图像数据上成功地得到实现。
Area detection, consistent constraint error detection, probability selection rule and symmetry optimization were suecessfully applied to the correction and completion of feature matching of curved scenes by epipolar constraints homography mapping in curved scenes. Only geometric constraints rather than scene-dependent constraints were involved in the whole matching process, so the method had great robustness and practicality. The results for experiments with real image data are given in the paper.
出处
《高技术通讯》
CAS
CSCD
北大核心
2006年第12期1246-1252,共7页
Chinese High Technology Letters
基金
863计划(2001AA422260)资助项目.
关键词
特征匹配
对极几何
基础矩阵
同形矩阵
feature matching, epipelar geometry, fundamental matrix, homography