期刊文献+

基于GIS和BP神经网络的农区地下水硝态氮含量分布特征分析 被引量:13

Spatial analysis of groundwater NO_3^--N concentration in agriculture-dominated regions based on GIS-based BPNN
下载PDF
导出
摘要 针对于非点源污染机理模型在实际运用中的限制,将人工神经网络引入地下水非点源污染格局的模拟和预报中,建立了基于G IS的BP神经网络模型用以模拟分析农区浅层地下水NO3--N含量及其空间分布特征。结果表明,以农田氮盈余、地下水埋深、30~60cm土层砂粒含量和土壤有机质4个因素为输入因子,以地下水NO3--N为输出因子,通过网络训练以及观测点缓冲区半径的设定与调整,BP神经网络模型有效地模拟了山东省桓台县地下水NO3--N含量及其空间分布特征,并且有较高的精度。该研究可为华北平原农区地下水质管理提供分析工具与决策依据,是对非点源污染机理模型的有益补充。 Aiming at the practical difficulty of processed-based non-point model in groundwater pollution management, an artificial neural network was introduced for modeling and prediction of non-point pollution. A GIS- based Back Propagation Neural Network (BPNN) was developed for modeling groundwater NO3^--N concentration. Field nitrogen surplus, groundwater depth, soil sandy content at 30-60 in depth and soil organic content were included as input vectors of the BPNN. By designation of buffer zone around sampling well, the BPNN simulated NO3^--N concentration well and effectively captured the general trend of the spatial patterns of the NO3^--N concentration. The study provides a practical tool for analysis and management of groundwater nitrate pollution in North China Plain and serves as a supplement of processed-based non-point pollution.
出处 《农业工程学报》 EI CAS CSCD 北大核心 2006年第12期39-43,共5页 Transactions of the Chinese Society of Agricultural Engineering
基金 国家自然科学基金资助项目(30270220) "十五"国家科技攻关重大专项(2002BA516A)
关键词 地下水 硝酸盐 人工神经网络 华北平原 groundwater nitrate artificial neural network North China Plain
  • 相关文献

参考文献13

  • 1Gabriel Gulis, Monika Czompolyova, James R. Cerhan.An ecologic study of nitrate in municipal drinking water and cancer incidence in TrnavaDistric, Slovakia [J].Environ Resear Sect A, 2002,88 : 182- 187.
  • 2张维理,田哲旭,张宁,李晓齐.我国北方农用氮肥造成地下水硝酸盐污染的调查[J].植物营养与肥料学报,1995,1(2):80-87. 被引量:635
  • 3Ma L, Shaffer M J. A review of carbon and N processes in nine U.S. soil N dynamics models[M]. Shaffer M J,Ma L, Hansen S. Modeling Carbon and N Dynamics forSoil Management. Florida, USA: Lewis Publishers,2001.
  • 4Sahoo G B, Raya C, Wadeb H F. Pesticide prediction in groundwater in North Carolina domestic wells using artificial neural network[J]. Ecol Model,2005,183,29-46.
  • 5刘光栋,吴文良.高产农田土壤硝态氮淋失与地下水污染动态研究[J].中国生态农业学报,2003,11(1):91-93. 被引量:49
  • 6Liu X J, Ju X T, Zhang F S, et al. Nitrogen dynamics and budgets in a winter wheat maize cropping system in the North China Plain[J]. Field Crops Research, 2003,83,111-124.
  • 7Aller L, Bennett T, Lehr J H, et al. DRASTIC: a standardized system for evaluating groundwater pollution potential using hydrogeologic settings[R]. U.S. Environmental Protection Agency Report #EPA/600/2- 87/035,1987.
  • 8Assimakopoulos J H,Kalivas D P,Kollias V J.A GIS-based fuzzy classification for mapping the agricultural soils for N-fertilizers use[J].Sci Tot Environ,2003,309:19-33.
  • 9Kolpin D W.Agricultural chemicals in groundwater of the Midwestern United States:relations to land use[J].J Environ Qual,1997,26,1025-1037.
  • 10McLay C D A,Dragten R,Sparling G,et al.Predicting groundwater nitrate concentrations in a region of mixed agricultural land use:a comparison of three approaches[J].Environ Pollut,2001,115:191-204.

二级参考文献14

共引文献718

同被引文献229

引证文献13

二级引证文献132

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部