摘要
针对于非点源污染机理模型在实际运用中的限制,将人工神经网络引入地下水非点源污染格局的模拟和预报中,建立了基于G IS的BP神经网络模型用以模拟分析农区浅层地下水NO3--N含量及其空间分布特征。结果表明,以农田氮盈余、地下水埋深、30~60cm土层砂粒含量和土壤有机质4个因素为输入因子,以地下水NO3--N为输出因子,通过网络训练以及观测点缓冲区半径的设定与调整,BP神经网络模型有效地模拟了山东省桓台县地下水NO3--N含量及其空间分布特征,并且有较高的精度。该研究可为华北平原农区地下水质管理提供分析工具与决策依据,是对非点源污染机理模型的有益补充。
Aiming at the practical difficulty of processed-based non-point model in groundwater pollution management, an artificial neural network was introduced for modeling and prediction of non-point pollution. A GIS- based Back Propagation Neural Network (BPNN) was developed for modeling groundwater NO3^--N concentration. Field nitrogen surplus, groundwater depth, soil sandy content at 30-60 in depth and soil organic content were included as input vectors of the BPNN. By designation of buffer zone around sampling well, the BPNN simulated NO3^--N concentration well and effectively captured the general trend of the spatial patterns of the NO3^--N concentration. The study provides a practical tool for analysis and management of groundwater nitrate pollution in North China Plain and serves as a supplement of processed-based non-point pollution.
出处
《农业工程学报》
EI
CAS
CSCD
北大核心
2006年第12期39-43,共5页
Transactions of the Chinese Society of Agricultural Engineering
基金
国家自然科学基金资助项目(30270220)
"十五"国家科技攻关重大专项(2002BA516A)
关键词
地下水
硝酸盐
人工神经网络
华北平原
groundwater
nitrate
artificial neural network
North China Plain