摘要
The effects of the ionic wind on the heat transfer rate from a heated vertical flat plate are described. The ionic wind is induced by three different types of discharge, corona discharge, dielectric barrier discharge (DBD) and dc glow discharge. The heat transfer coefficients for the heated copperplate under free convection conditions with and without an ionic wind are obtained by measuring the temperature and the heating power of the copper plate. It has been proved that the convective heat transfer coefficients increase by several times with the help of the ionic wind. With the ionic wind induced by a uniform dc glow discharge, the heat transfer coefficient of the heated copper plate is highly enhanced compared with those induced by a corona discharge or DBD. With the use of DBD, the breakdown voltage is increased significantly, which is helpful in avoiding a breakdown when heat transfer is enhanced by the ionic wind. In addition, it makes the application of the ionic wind much safer.
The effects of the ionic wind on the heat transfer rate from a heated vertical flat plate are described. The ionic wind is induced by three different types of discharge, corona discharge, dielectric barrier discharge (DBD) and dc glow discharge. The heat transfer coefficients for the heated copperplate under free convection conditions with and without an ionic wind are obtained by measuring the temperature and the heating power of the copper plate. It has been proved that the convective heat transfer coefficients increase by several times with the help of the ionic wind. With the ionic wind induced by a uniform dc glow discharge, the heat transfer coefficient of the heated copper plate is highly enhanced compared with those induced by a corona discharge or DBD. With the use of DBD, the breakdown voltage is increased significantly, which is helpful in avoiding a breakdown when heat transfer is enhanced by the ionic wind. In addition, it makes the application of the ionic wind much safer.