期刊文献+

医学图像配准综述 被引量:4

Review of Image Registration Methods for Medical Images
下载PDF
导出
摘要 医学领域,医生需要比较不同的解剖影像信息和功能影像信息。将对应于同一物体的不同影像的像素点对应起来就是医学图像配准的主要任务。鉴于需要配准的图像的采集的方法和时间等方面不同,配准所采用的方法也不同。本文介绍了医学图像配准的新近方法。首先从图像配准的任务出发,介绍了配准过程的主要涉及的方面和配准流程。然后从配准时变换的参数角度考虑,将图像的配准分成两大类考虑:参数配准和非参数配准。每一类中给出基本的配准方法,并讨论其用法和特点。对参数配准,主要讨论它们各自不同的方法和适合处理的图像对;对非参数配准,侧重于考虑控制方程的由来和整体外力的计算。 Purpose: Review different methods in medical image registration.Method: Parametric and non-parametric registration methods. Result: Various registration methods and applications are presented. Conclusion: Different registration methods fit to different kinds of medical images and result differen applications in medical field. In medical field, researchers need to combine and compare the information given by functional and anatomical images. For the reason, image registration which can map points from one image to homologous points on an object h the second image is one of the fundamental tasks in image processing. Different numerical methods are introduced into registration due to the different images taken from different perspectives, times and devices. In this paper, we present an overview of recent methods for image registration in medical field. We start by the goal of image registration and introduce the framework of a registration process. The registration methods under review are classified into two categories: parametric image registration and non-parametric image registration. Typical methods in each category are presented. In each case, we provide the readers with general background information and properties or explanation of how these methods work.
作者 王彩芳 姜明
出处 《CT理论与应用研究(中英文)》 2006年第2期74-80,共7页 Computerized Tomography Theory and Applications
基金 This work was supported in part by the National Basic Research Program of China (2003CB716101) National Science Foundation of China (NSFC) (60325101, 60532080) Engineering Research Institute, Peking University.
关键词 变换 相似性测度 图像配准 参数配准 Transformation, Distance measure, Image registration, Paramelric registration
  • 相关文献

参考文献16

  • 1Maintz,J.B.A.and M.A.Viergever.A Survey of Medical Image Registration[J].Medical Image Analysis,1998.2(1).
  • 2Modersitzki,J.Numerical Methods for Image Registration[M].First ed.2004,New York:Oxford University Press.
  • 3Maurer,C.R.,et al.Registration of Head Volume Images Using Implantable Fiducial Markers[J].IEEE Transactions on Medical Imaging,1997,16(4):p.447-462.
  • 4Chui,H.L.and A.Rangarajan.A New Point Matching Algorithm for Non-Rigid Registration[J].Computer Vision and Image Understanding,2003.89(2-3):p.114-141.
  • 5Dhawan,A.P.,et al..Iterative Principal Axes Registration Method for Analysis of MR-PET Brain Images[J].IEEE Transactions on Biomedical Engineering,1995.42(11):p.1079-1087.
  • 6Schormann,T.and K.Zilles.Limitations of the Principal-Axes Theory[J].IEEE Transactions on Medical Imaging,1997.16(6):p.942-947.
  • 7Brown,L.G.,A Survey of Image Registration Techniques[J].Computing Surveys,1992,24(4):p.325-376.
  • 8Jenkinson,M.and S.Smith.A Global Optimisation Method for Robust Affine Registration of Brain Images[J].Medical Image Analysis,2001,5(2):p.143-156.
  • 9Pluim,J.P.W.,J.B.A.Maintz,and M.A.Viergever,Mutual-Information-Based Registration of Medical Images:A Survey[J].IEEE Transactions on Medical Imaging,2003,22(8):p.986-1004.
  • 10Viola,P.and W.M.Wells.Alignment by Maximization of Mutual Information[C].in Proc.5th Int.Conf.Computer Vision.1995.

同被引文献58

  • 1乌兰其其格,刘汝平.多层螺旋CT三维重建技术在口腔医学的应用[J].内蒙古医科大学学报,2008,30(S2):209-213. 被引量:6
  • 2王海南,郝重阳,雷方元,张先勇.非刚性医学图像配准研究综述[J].计算机工程与应用,2005,41(11):180-184. 被引量:24
  • 3闫成新,桑农,张天序.基于图论的图像分割研究进展[J].计算机工程与应用,2006,42(5):11-14. 被引量:33
  • 4Pham DL, Xu Chenyang, Prince J. Current methods in medical image segmentation[J]. Annual Review of Biomedical Engineering, 2000, 2(8): 315-337.
  • 5Suri JS, Singh S, Liu K, et al. Shape recovery algorithms using level sets in 2-D/3-D medical imagery: A state-of-art review [J]. IEEE Trans on Information Technology in Biomedicine, 2002,6( 1 ) : 8 - 28.
  • 6McInernay T, Terzopuoulos, D. Deformable models in medical image analysis: A survey [J]. Medical Image Analysis, 1996, 1 (2) :91 - 108.
  • 7Niessen WJ, Pomeny BMT, Viergever M A. Geodesic deformable models for medical image analysis [J].IEEE Trans on Medical Imaging, 1998,17(2) :634 - 641.
  • 8Malladi R, Sethian JA, Vemuri BC. Shape modeling with front propagation: A level set approach [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1995, 17(2): 158- 175.
  • 9Cootes TF, Taylor C J, Cooper DH, et al . Active shape model-their training and application [ J ]. Computer Vision and Image Understanding, 1995,61( 1 ) :38 - 59.
  • 10Cootes TF, Edwards GJ, Taylor DH. Active appearance models [J].Lecture Notes in Computer Science, 1998, 1407(2):484- 498.

引证文献4

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部