期刊文献+

钛合金中氢化物应力的再取向

The stress-induced reorientation of hydrides in titanium alloy
下载PDF
导出
摘要 在拉应力为50~200 MPa和150~400℃温度循环条件下,研究了应力和温度循环次数对T225合金中氢化物再取向程度的影响.结果表明,随着应力的增大和温度循环次数的增加,T225合金中氢化物再取向的程度提高.氢化物发生再取向时的应力存在一个阈值,当应力低于这个阈值时,即使增加温度循环次数,氢化物再取向也不明显;当应力大于应力阈值时,氢化物应力再取向的程度与应力和温度循环次数的关系式为:R_σ=0.735exp[0.0167N^(0.224)(σ-σ_(th)~N)].应力阈值随着温度循环次数的增加而降低,它们之间的关系为σ_(th)~N=101+60exp(-0.2N). Under the conditions of the tensile stress from 50 to 200 MPa and temperature cycling between 150 ℃ to 400 ℃, the effects of stress and the number of temperature cycling on the hydride reorientation in T225 alloy have been investigated. The results also show that with the increase of stress or the number of temperature cycling, the level of hydride reorientation increases. There is a threshold stress as the hydride reorientation takes place. Below the threshold stress the hydride reorientation is not obvious, even at more number of temperature cycling. When the applied stress is higher than the threshold stress, there are the certain relationships between the level of hydride reorientation with the stress and the number of temperature cycling. The threshold stress is decreased with the increase of the number of temperature cycling.
出处 《材料研究学报》 EI CAS CSCD 北大核心 2006年第6期653-656,共4页 Chinese Journal of Materials Research
基金 核燃料及材料国家重点实验室基金资助项目00JS85.3.1.QT0603.
关键词 金属材料 氢化物 应力再取向 应力阈值 钛合金 metallic materials, hydride, stress reorientation, threshold stress, titanium alloy
  • 相关文献

参考文献12

  • 1C.E.Ells, Journal of Nuclear Materials, 35, 306(1970)
  • 2H.Stehle, W.Kaden, R.Manzel, Nuclear Engineering and Design, 33, 155(1975)
  • 3蒋有荣,周邦新,杨敏华.Zr-4板中氢化物应力再取向的研究[J].核动力工程,1993,14(4):368-373. 被引量:3
  • 4蒋有荣.锫合金中氢化物应力再取向的研究,中国核动力研究设计院硕士研究生论文,1992年
  • 5S.I.Hong, K.W.Lee, J. of Nuclear Materials, 340,203(2005)
  • 6C.Q.Chen, S.X.Li, K.Lu, Acta Materialia, 51,931(2003)
  • 7C.Q.Chen, S.X.Li, H.Zheng, L.B.Wang, K.Lu, Acta Materialia, 52, 3697(2004)
  • 8D.Grambole, T.Wang, F.Herrmann, F.Eichhorn, Nuclear Instruments and Methods in Physics Research B, 210,526(2003)
  • 9C.J.Simpson, O.A.Kupcis, D.V.Leemans, Hydride Reorientation and Fracture in Zirconium Alloys, In: Zirconium in the Nuclear Industry, edited by A.L.Lowe, Jr andG.W.Parry (ASTM STP 633, 1977) p.630
  • 10R.N.Singh, R.Kishore, S.S.Singh, T.K.Sinha,B.P.Kashyap, J. of Nuclear Materials, 325, 26(2004)

二级参考文献7

  • 1巴瑞特C S 马萨尔斯T B著 陶琨 等译.金属的结构[M].北京:机械工业出版社,1987.457.
  • 2Paton N E, Williams J C. Effect of hydrogen on titanium and its alloys, hydrogen in metals [M]. ASM, 1974. 409.
  • 3Williams J C. Hydride formation, hydrogen in metals [M]. ASM, 1974.374.
  • 4Zhang C B, et al. High resolution TEM study of δ-hydride and a-Ti/δ interface structure in highly hydrogenated α-Ti [J]. Acta Met, 1994, 42(7):2555.
  • 5万晓景.金属的氢脆.材料保护,1979,(2):11-25.
  • 6于振涛,周廉,邓炬,顾海澄.Ti-2Al-2.5Zr合金再结晶特性及动力学机制[J].稀有金属材料与工程,1999,28(6):340-344. 被引量:15
  • 7周邦新,蒋有荣.Zr-4管中氢化物分布的应力再取向研究[J].核动力工程,1992,13(5):66-69. 被引量:7

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部