期刊文献+

椭球状态定界的鲁棒算法 被引量:2

Robust ellipsoidal state bounding algorithm
下载PDF
导出
摘要 提出了一种计算鲁棒的线性离散时间系统的椭球状态定界算法.算法假设系统的过程和量测噪声以及初始状态由已知椭球来定界,然后利用椭球集合来描述系统真实状态的可行集.算法的时间更新和量测更新过程分别产生两个椭球的向量和与交.算法对椭球形状矩阵进行Cholesky分解,使得当存在舍入误差时椭球形状矩阵保持正定.为了不受病态矩阵求逆的影响,算法的量测更新过程采用了求次最小容积椭球的方法.采用在数字计算机上进行蒙特卡洛仿真来检验算法的性能.结果表明算法的精度与最优算法十分接近,并且具有很好的计算鲁棒性.算法同时具有易于在并行计算机上运行的优点. A numerically robust algorithm for computing ellipsoidal bounds on the state of a linear, discrete - time dynamic system was proposed. The algorithm employed ellipsoidal outer approximation of the feasible set assuming instantaneous process and observation noise vectors and the initial state to be bounded by known ellipsoids. The time and observation updates produced, respectively, the vector sum and intersection of two ellipsoids. Cholesky decomposition was used in the propagation of the shape - defining matrix of the ellipsoid to keep it positive definite in the presence of roundoff errors. Besides, a subminimal - volume ellipsoid was selected from a family of ellipsoids as the observation - updated ellipsoid to circumvent the complex optimization affected by ill -conditioned matrix inverse. Monte Carlo simulations on a digital computer were performed to compare the performance of the proposed algorithm with that of the optimal algorithm. Simulation resuits show that the proposed algorithm not only matches the performance of the optimal algorithm closely in terms of ellipsoid volumes and mean-square errors, but also is less vulnerable to roundoff errors. The proposed algorithm also features the capability to be realized on a parallel computer.
作者 柴伟 孙先仿
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2006年第12期1447-1450,共4页 Journal of Beijing University of Aeronautics and Astronautics
基金 国家自然科学基金资助项目(60234010 60674030) 北京市自然科学基金资助项目(4032014)
关键词 状态估计 数值方法 鲁棒性 集员 椭球定界 state estimation numerical methods robustness set membership ellipsoidal bounding
  • 相关文献

参考文献8

  • 1Maksarov D G,Norton J P.State bounding with ellipsoid set description of uncertainty[J].International Journal of Control,1996,65(5):847-866
  • 2Sun X F,Fan Y Z.Guaranteed sensor fault detection and isolation via recursive rectangular parallelepiped bounding in state-set estimation[C]// Proc 3rd ASCC.Shanghai:[s.n.],2000:3041-3046
  • 3Chisci L,Garulli A,Zappa G.Recursive state bounding by parallelotopes[J].Automatica,1996,32(7):1049-1055
  • 4Spathopoulos M P,Grobov I D.A state-set estimation algorithm for linear systems in the presence of bounded disturbances[J].International Journal of Control,1996,63(4):799-811
  • 5Durieu C,Walter E,Polyak B.Multi-input multi-output ellipsoidal state bounding[J].Journal of Optimization Theory and Applications,2001,111(2):273-303
  • 6Maksarov D G,Norton J P.Computational efficient algorithms for state estimation with ellipsoidal approximations[J].International Journal of Adaptive Control and Signal Processing,2002,16(5):411-434
  • 7Scholte E,Campbell M.A nonlinear set-membership filter for on-line applications[J].International Journal of Robust and Nonlinear Control,2003,13(10):1337-1358
  • 8Morf M,Kailath T.Square root algorithms for the least squares estimation[J].IEEE Transactions on Automatic Control,1975,20(4):487-497

同被引文献27

  • 1左启耀,袁洪,林宝军.高动态环境下GPS信号跟踪环路优化算法研究[J].宇航学报,2008,29(2):550-555. 被引量:16
  • 2慕德俊,戴冠中.基于并行结构实现修正的扩展Kalman滤波计算[J].自动化学报,1995,21(1):104-109. 被引量:1
  • 3柴伟,孙先仿.椭球状态定界的数值稳定算法[J].西安交通大学学报,2007,41(4):453-457. 被引量:1
  • 4Maksarov D G, Norton J P. Computationally efficient algorithms for state estimation with ellipsoidal approximations[J]. International Journal of Adaptive Control and Signal Processing, 2002, 16(6) : 411 - 434.
  • 5Chisci L, Garulli A, Zappa G. Recursive state bounding by parallelotopes[J]. Automatica, 1996, 32(7) : 1049 - 1055.
  • 6Alamo T, Bravo J M, Camacho E F. Guaranteed state estimation by zonotopes[J]. Automatica, 2005, 41(6): 1035-1043.
  • 7Spathopoulos M P, Grobov I D. A state-set estimation algorithm for linear systems in the presence of hounded disturbances[J]. International Journal of Control, 1996, 63(4) : 799 - 811.
  • 8Morf M, Kailath T. Square-root algorithms for least squares estimation[J]. IEEE Trans. on Automatic Control, 1975, 20(4) 487 - 497.
  • 9Deller J R, Odeh S F. Adaptive set-membership identification in O(m) time for linear-in-parameters models[J]. IEEE Trans. on Signal Processing, 1993, 41(5) : 1906 - 1924.
  • 10Gaston F M F, Irwin G W. Systolic Kalman filtering: an overview[J]. IEE Proceedings-Control Theory and Application, 1990, 137(4) :235 - 244.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部