期刊文献+

基于Web挖掘的电子商务推荐系统中推荐方法研究

Study on the recommending methods used in e-commerce recommending system based on Web usage mining
下载PDF
导出
摘要 以改进Apriori算法、K_means聚类算法和ARHP算法3种不同的Web挖掘技术为基础构造推荐算法,形成推荐集.仿真实验结果表明基于ARHP的推荐算法的覆盖率和准确度明显高于其他两种方法,可用于基于Web挖掘的电子商务推荐系统中. In research about recommendation system in e-commerce based on web usage mining, three recommending methods based on improved technique about Apriori, K-means cluster way and ARPH technique are presented. In the testing we find the precision and coverage rates of the recommending method based on ARHP outperform the other two methods obviously, which can be utilized in the e-commerce recommendation system.
作者 景丽 黄献波
出处 《郑州轻工业学院学报(自然科学版)》 CAS 2006年第4期66-68,共3页 Journal of Zhengzhou University of Light Industry:Natural Science
基金 河南省教育厅自然科学基金资助项目(2004922081)
关键词 电子商务 推荐系统 推荐方法 WEB挖掘 协同过滤 事务聚类 关联规则 关联规则超图划分技术 e-commerce recommending system recommending method Web usage mining collaborative fil- tering algorithm transaction clustering association rule ARHP
  • 相关文献

参考文献5

  • 1Conor Hayes, Padraig Cunningham. Context boosting collaborative recommendations [ J ]. Knowledge-Based Systems,2004, 17(24) :131-138.
  • 2闫莺,王大玲,于戈.支持个性化推荐的Web页面关联规则挖掘算法[J].计算机工程,2005,31(1):79-81. 被引量:19
  • 3Mobesher B, Dai H. Improving the effectiveness of collaborative tilting on anonymous web usage data [ A ]. Anand S S.Prec of the IJCAI2001 workshop on Intelligent Techniques for Web Personalization( ITWP01 ) [ C ]. Berlin : Springer-Verlag,2001.49-56.
  • 4Han G Karypis, Kumar V, Mobasher B. Hypergraph based clustering in high dimensional data sets a summary of results[J]. IEEE Data Engineering Bulletin, 1998,21 ( 1 ) : 15-22.
  • 5Depaul university. Depaul CTI Web usage data[EB/OL].http://maya. cs. depaul. edu/- classes/ect584/resource.html,2002 - 04 - 12.

二级参考文献10

  • 1Agrawal R, Imielinski T, Swami A. Mining Association Rules Between Sets of Items in Large Databases[J]. In:Proceedings of ACM SIGMOD Conference on Management of Data, 1993:207-216
  • 2Agrawal R, Srikant R. Fast Algorithms for Mining Association Rules [J]. In: Proceedings of International Conference on Very Large Databases, 1994:487-499
  • 3Han J, Pei J, Yin Y. Mining Frequent Patterns Without Candidate Generation. In: Proc. ofACM-SIGMOD Conference, 2000: 1-12
  • 4Wang K, Tang L, Han J, et al. Top Down FP-growth for Association Rule Mining. In: Proceedings of PAKDD2002, 2002:334-340
  • 5Han J, JianYong, Lu Y, P, et al. Mining Top-K Frequent Closed Patterns Without Minimum Support. In: ICDM, 2002:211-218
  • 6Pei J, Han J, Lu H, et al. H-mine: Hyper-structure Mining of Frequent Patterns in Large Databases. In: ICDM, 2001:441-448
  • 7Zhou Z, Ezeife C I. A Low-scan Incrcmental Association Rule Maintenance Method Based on the Apriori Property. In: Canadian Conference on Al, 2001:26-35
  • 8Lin W, Alvarez S A, Ruiz C. Efficient Adaptive-support Association Rule Mining for Recommender Systems. In: Data Mining and Knowledge Discovery, 2002,6( 1 ): 83-105
  • 9Wang D, Bao Y, Yu G, et al. Using Page Classification and Association Rule Mining for Personalized Recommendation in Distance Learning. In: ICWL, 2002:363-376
  • 10Depaul CTI Web Usage Mining Data. http://maya.cs.depaul.edu/~classes/etc584/resource.html

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部