摘要
以改进Apriori算法、K_means聚类算法和ARHP算法3种不同的Web挖掘技术为基础构造推荐算法,形成推荐集.仿真实验结果表明基于ARHP的推荐算法的覆盖率和准确度明显高于其他两种方法,可用于基于Web挖掘的电子商务推荐系统中.
In research about recommendation system in e-commerce based on web usage mining, three recommending methods based on improved technique about Apriori, K-means cluster way and ARPH technique are presented. In the testing we find the precision and coverage rates of the recommending method based on ARHP outperform the other two methods obviously, which can be utilized in the e-commerce recommendation system.
出处
《郑州轻工业学院学报(自然科学版)》
CAS
2006年第4期66-68,共3页
Journal of Zhengzhou University of Light Industry:Natural Science
基金
河南省教育厅自然科学基金资助项目(2004922081)
关键词
电子商务
推荐系统
推荐方法
WEB挖掘
协同过滤
事务聚类
关联规则
关联规则超图划分技术
e-commerce
recommending system
recommending method
Web usage mining
collaborative fil- tering algorithm
transaction clustering
association rule
ARHP