期刊文献+

SAR Images Despeckling Based on Bayesian Estimation and Fuzzy Shrinkage in Wavelet Domains 被引量:3

基于小波域贝叶斯估计模糊萎缩的SAR图像降斑算法(英文)
下载PDF
导出
摘要 An efficient despeclding algorithm is proposed based on stationary wavelet transform (SWT) for synthetic aperture radar (SAR) images. The statistical model of wavelet coefficients is analyzed and its performance is modeled with a mixture density of two zero-mean Gaussian distributions. A fuzzy shrinkage factor is derived based on the minimum mean square error (MMSE) criteria with Bayesian estimation. In the case above, the ideas of region division and fuzzy shrinkage arc adopted according to the interscale dependencies among wavelet coefficients. The noise-free wavelet coefficients are estimated accurately. Experimental results show that the algorithm proposed is superior to the refined Lee filter, wavelet soft thresbolding shrinkage and SWT shrinkage algorithms in terms of smoothing effects and edges preservation. An efficient despeclding algorithm is proposed based on stationary wavelet transform (SWT) for synthetic aperture radar (SAR) images. The statistical model of wavelet coefficients is analyzed and its performance is modeled with a mixture density of two zero-mean Gaussian distributions. A fuzzy shrinkage factor is derived based on the minimum mean square error (MMSE) criteria with Bayesian estimation. In the case above, the ideas of region division and fuzzy shrinkage arc adopted according to the interscale dependencies among wavelet coefficients. The noise-free wavelet coefficients are estimated accurately. Experimental results show that the algorithm proposed is superior to the refined Lee filter, wavelet soft thresbolding shrinkage and SWT shrinkage algorithms in terms of smoothing effects and edges preservation.
出处 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2006年第4期326-333,共8页 中国航空学报(英文版)
基金 A Postdoctoral Science Foundation of China (J63104020156) National Defence Foundation of China
关键词 SAR image despeclding fuzzy shrinkage factor MMSE region division. Bayesian estimation SWT SAR image despeclding fuzzy shrinkage factor MMSE region division. Bayesian estimation SWT
  • 相关文献

参考文献17

  • 1马作民,毛士艺,刘祥林.SAR Image Reconstruction by a Thin and Weak Feature Preserving Simulated Annealing Approach[J].Chinese Journal of Aeronautics,2001,14(3):147-154. 被引量:1
  • 2Lee J S.Digital image enhancement and noise filtering by use of local statistics[J].IEEE Trans on Pattern Analysis and Machine Intelligence,1980,2(2):156-163.
  • 3Kuan D T,Sawchuk A A,Strand T C.Adaptive noise smoothing filter for images with signal-dependent noise[J].IEEE Trans on Pattern Analysis and Machine Intelligence,1985,7(2):165-177.
  • 4Kuan D T,Sawchuk A A,Strand T C.Adaptive restoration of images with speckle[J].IEEE Trans on Acoustics Speech and Signal Processing,1987,35(3):373-383
  • 5Frost V S,Stiles J A,Shanmugan K S,et al.A model for radar images and its application to adaptive digital filtering of multiplicative noise[J].IEEE Trans on Pattern Analysis and Machine Intelligence,1982,4(2):157-166.
  • 6Lopes A,Touzi R,Nezry E.Adaptive speckle filters and scene heterogeneity[J].IEEE Trans on Geosci Remote Sensing,1990,28(11):992-1000.
  • 7Hagg W,Sites M.Efficient speckle filtering of SAR images[C]//Proceedings of the International Geoscience and Remote Sensing Symposium,1994:2140-2142.
  • 8Donoho D L.De-noising by soft-thresholding[J].IEEE Trans on Information Theory,1995,41(3):613-627.
  • 9Argenti F.Speckle removal from SAR images in the undecimated wavelet domain[J].IEEE Trans on Geoscience and Remote Sensing,2002,40(11):2363-2374.
  • 10Neson G P,Silverman B W.The stationary wavelet transform and some statistcal applications[R].BS8 1TW,U.K.:Univ.of Bristol,1995.

二级参考文献5

  • 1[1]Touzi R. A protocol for speckle filtering of SAR images[DB/OL]. http://www.estec.esa.nl/CEOS99/papers/.
  • 2[2]Geman S, Geman D. Stochastic relaxation, Gibbs distribution and the Bayesian restoration of images[J]. IEEE Trans Pattern Anal Mach Intell, 1984, 6(6): 721-741.
  • 3[3]White R G. A simulated annealing algorithm for radar cross section estimation and segmentation[J]. SPIE Int Conf on Applications of Artificial Neural Networks V,1994,2243:231-241.
  • 4[4]Oliver C J, Quegan S. Understanding synthetic aperture radar images[M]. Washington: Artech House Inc, 1998.
  • 5[5]Lopes A, Nezry E, Touzi R, et al.Structure detection and statistical adaptive speckle filtering in SAR images[J]. Int J Remote Sens, 1993, 14 (9): 1735-1758.

同被引文献28

  • 1管鲍,孙洪.SAR图像小波域隐Markov模型中状态参数的Turbo迭代估计[J].电子学报,2005,33(6):1039-1043. 被引量:1
  • 2张良培,王毅,李平湘.基于各向异性扩散的SAR图像斑点噪声滤波算法[J].电子学报,2006,34(12):2250-2254. 被引量:14
  • 3J S Lee. Digital image enhancement and noise filtering by use of local stafistics[J]. IEEE Trans on Pattern Analysis and Ma- chine Intelligence, 1980,2(2) : 156 - 163.
  • 4D T Kuan,A A Sawchuk, P Chavel. Adaptive noise smoothing filter for images with signal-dependent noise[J], lEEE Trans on Pattern Analysis and Machine Intelligence, 1985,7 (2) : 165 - 177.
  • 5A Lopes,R Touzi,E Nezry. Adaptive speckle filters and scene heterogeneity [ J ]. IEE-T. Trans. on Geoscience and Remote Sensing, 1990,28(6) :992 - 1000.
  • 6M Li, Y Wu. SAR image segmentation based on mixture con- text and wavelet hidden-class-lable Markov random field[ J].Computers and Mathematics with Applications, 2009, 57 (6) : 961 - 969.
  • 7M Beige, M E Kilmer, E L Miller. Wavelet domain image restoration with adaptive edge-preserving regularization [ J ]. IEEE Trans. on Image Processing, 2000,9(4 ):597- 608.
  • 8E SimonceUi, E Adelson. Noise Removal via Bayesian Wavelet Codngl A]. Proc. ICIP[ C]. 1996.1.379 - 382.
  • 9D Gleich,M Datcu. Wavelet-based SAR image despeclding and information extraction using particle filter[ J]. IEEE Trans on Image Processing, 2009,18(10) :2167 - 2184.
  • 10N Gordon, D Salmond, A F M Smith. Novel approach to nonlinear/non-Gaussian bayesian state estimation[ J]. IEEE Trans on Proceedings- F Radar, Sonar and Navigation, 1993,140( 2 ) : 107 - 113.

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部