期刊文献+

Fault Diagnosis in a Hydraulic Position Servo System Using RBF Neural Network 被引量:10

基于RBF神经网络的液压位置伺服系统故障诊断(英文)
下载PDF
导出
摘要 Considering the nonlinea r, time-varying and ripple coupling properties in the hydraulic servo system, a two-stage Radial Basis Function (RBF) neural network model is proposed to realize the failure detection and fault localization. The first-stage RBF neural network is adopted as a failure observer to realize the failure detection. The trained RBF observer, working concurrently with the actual system, accepts the input voltage signal to the servo valve and the measurements of the ram displacements, rebuilds the system states, and estimates accurately the output of the system. By comparing the estimated outputs with the actual measurements, the residual signal is generated and then analyzed to report the occurrence of faults. The second-stage RBF neural network can locate the fault occurring through the residual and net parameters of the first-stage RBF observer. Considering the slow convergence speed of the K-means clustering algorithm, an improved K-means clustering algorithm and a self-adaptive adjustment algorithm of learning rate arc presented, which obtain the optimum learning rate by adjusting self-adaptive factor to guarantee the stability of the process and to quicken the convergence. The experimental results demonstrate that the two-stage RBF neural network model is effective in detecting and localizing the failure of the hydraulic position servo system. Considering the nonlinea r, time-varying and ripple coupling properties in the hydraulic servo system, a two-stage Radial Basis Function (RBF) neural network model is proposed to realize the failure detection and fault localization. The first-stage RBF neural network is adopted as a failure observer to realize the failure detection. The trained RBF observer, working concurrently with the actual system, accepts the input voltage signal to the servo valve and the measurements of the ram displacements, rebuilds the system states, and estimates accurately the output of the system. By comparing the estimated outputs with the actual measurements, the residual signal is generated and then analyzed to report the occurrence of faults. The second-stage RBF neural network can locate the fault occurring through the residual and net parameters of the first-stage RBF observer. Considering the slow convergence speed of the K-means clustering algorithm, an improved K-means clustering algorithm and a self-adaptive adjustment algorithm of learning rate arc presented, which obtain the optimum learning rate by adjusting self-adaptive factor to guarantee the stability of the process and to quicken the convergence. The experimental results demonstrate that the two-stage RBF neural network model is effective in detecting and localizing the failure of the hydraulic position servo system.
出处 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2006年第4期346-353,共8页 中国航空学报(英文版)
基金 Natural Science Foundation of Beijing(4012009)
关键词 failure diagnosisl hydraulic servo system two-stage RBF neural nctwork improved K-means clustering algorithm failure diagnosisl hydraulic servo system two-stage RBF neural nctwork improved K-means clustering algorithm
  • 相关文献

参考文献7

  • 1Park T G,Ryu J S,Lee K S.Actuator fault estimation with disturbance decoupling[C]//IEEE Proc Control Theory Appl,2000,147(5):501-508.
  • 2Lee C C,Chung P C,Tsai J R.Robust radial basis function neural networks[J].IEEE Translated on System,Man and Cybernetics,Part B,1999,29(6):674-685.
  • 3郝英,孙健国,杨国庆,白杰.基于支持向量机的民航发动机故障检测研究[J].航空学报,2005,26(4):434-438. 被引量:7
  • 4Wang L.RBF neural network predictive control for coagulant dosage[C]//Proceedings of the 5th World Congress on Intelligent Control and Automation.Hangzhou,2004:15-19.
  • 5刘向群,仇越,张洪钺.基于频谱法与神经网络的航空起动发电机的故障检测与诊断[J].航空学报,2004,25(2):158-161. 被引量:13
  • 6An L,sepehri N.Leakage fault identification in hydraulic positioning system using extended kalman filter[C]//Proceeding of the 2004 American Conference.Boston,Massachusetts,2004.
  • 7An L,Sepehri N.Hydraulic actuator circuit fault detection using extended kalman filter[C]//Proceedings of the American Control Conference Denver.Colorado,2003.

二级参考文献10

  • 1蔡正国.神经网络用于转子在线振动监测中的谱型预报[J].西安交通大学学报,1994,28(9):1-6. 被引量:5
  • 2陈循,田江红,温熙森,唐丙阳.阶比谱分析与汽车起动电机故障的实时诊断[J].国防科技大学学报,1996,18(4):44-48. 被引量:8
  • 3Guhmann C, Filbert D. Fault diagnosis of electric low-power motors by analyzing the current signal[A]. IFAC Fault Detection,Supervision and Safety for Technical Process[C]. 1991.141-146.
  • 4Liu X Q, Zhang H Y, Liu J,et al. Fault detection and piagnosis of permanent-magnet DC motor based on parameter estimation and neural network[J]. IEEE Transactions on Industrial Electronics, 2000,47(5):1021-1030.
  • 5Hayton P, Schoelkopf B, Tarassenko L, et al. Support vector novelty detection applied to jet engine vibration spectra[A]. Proceedings of NIPS2000[C]. USA: MIT Press, 2000:946-952.
  • 6Tax D, Duin R. Data domain description by support vectors[A]. Proceedings of ESANN99[C]. Bressels:D Facto Press, 1999. 251--256.
  • 7Scholkopf B, Platt J C. Estimating the support of a high-dimensional distribution [R]. Microsoft Research Corporation Technical Report MSR-TR 87. Microsoft, 1999.
  • 8Tax D, Duin R. Outliers and data descriptions[A]. Proceedings of ASCI2001[C]. Delft: ASCI, 2001. 234-241.
  • 9陈恬,孙健国,杨蔚华,秦海波,卓刚.自组织神经网络航空发动机气路故障诊断[J].航空学报,2003,24(1):46-48. 被引量:25
  • 10郝英,孙健国,白杰.航空燃气涡轮发动机气路故障诊断现状与展望[J].航空动力学报,2003,18(6):753-760. 被引量:43

共引文献18

同被引文献85

引证文献10

二级引证文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部