摘要
Active multiple tuned mass dampers (referred to as AMTMD), which consist of several active tuned mass dampers (ATMDs) with identical stiffness and damping coefficients but varying mass and control force, have recently been proposed to suppress undesirable oscillations of structures under ground acceleration. It has been shown that the AMTMD can remarkably improve the performance of multiple tuned mass dampers (MTMDs) and is also more effective in reducing structure oscillation than single ATMDs. Notwithstanding this, good performance of AMTMD (including a single ATMD illustrated from frequency-domain analysis) may not necessarily translate into a good seismic reduction behavior in the time-domain. To investigate these phenomena, a three-story steel structure model controlled by AMTMD with three ATMDs was implemented in SIMULINK and subjected to several historical earthquakes. Likewise, the structure under consideration was assumed to have uncertainty of stiffness, such as 4-15% of its initial stiffness, in the numerical simulations. The optimum design parameters of the AMTMD were obtained in the frequency-domain by implementing the minimization of the minimum values of the maximum dynamic magnification factors (DMF) of general structures with AMTMD. For comparison purposes, response analysis of the same structure with a single ATMD was also performed. The numerical analysis and comparison show that the AMTMD generally renders better effectiveness when compared with a single ATMD for structures subjected to historical earthquakes. In particular, the AMTMD can improve the effectiveness of a single ATMD for a structure with an uncertainty of stiffness of 4-15% of its initial stiffness.
Active multiple tuned mass dampers (referred to as AMTMD), which consist of several active tuned mass dampers (ATMDs) with identical stiffness and damping coefficients but varying mass and control force, have recently been proposed to suppress undesirable oscillations of structures under ground acceleration. It has been shown that the AMTMD can remarkably improve the performance of multiple tuned mass dampers (MTMDs) and is also more effective in reducing structure oscillation than single ATMDs. Notwithstanding this, good performance of AMTMD (including a single ATMD illustrated from frequency-domain analysis) may not necessarily translate into a good seismic reduction behavior in the time-domain. To investigate these phenomena, a three-story steel structure model controlled by AMTMD with three ATMDs was implemented in SIMULINK and subjected to several historical earthquakes. Likewise, the structure under consideration was assumed to have uncertainty of stiffness, such as 4-15% of its initial stiffness, in the numerical simulations. The optimum design parameters of the AMTMD were obtained in the frequency-domain by implementing the minimization of the minimum values of the maximum dynamic magnification factors (DMF) of general structures with AMTMD. For comparison purposes, response analysis of the same structure with a single ATMD was also performed. The numerical analysis and comparison show that the AMTMD generally renders better effectiveness when compared with a single ATMD for structures subjected to historical earthquakes. In particular, the AMTMD can improve the effectiveness of a single ATMD for a structure with an uncertainty of stiffness of 4-15% of its initial stiffness.