摘要
挥发性盐基氮一直以来是评定肉品新鲜程度的重要指标,通常其测定依据是半微量凯氏定氮法,这难以满足当前肉品快速非破坏性的检测要求。文章通过近红外漫反射光谱法(NIRS)建立了挥发性盐基氮(TVB-N)的预测模型,并通过聚类分析方法对光谱数据进行了分类处理。结果表明当猪肉样品中TVB-N含量超过11.6 mg.(100g)-1时,可以判定该肉品为次鲜肉,采用近红外漫反射光谱法建立预测模型,能够实现对肉品的新鲜程度非破坏性、快速检测。
The value of the volatile basic nitrogen of meat is an important index to determine the freshness of meat. It is difficult to meet the demand of fast and non-destructive measurement by means of classical semimicro-quantitative nitrogent method. A model to predict the value of the volatile basic nitrogen based on near-infrared reflectance spectroscopy was established. Cluster analysis methods were applied to deal with the data of NIRS. If the content of TVB-N is more than 11.6 mg · (100 g)^-l, the back pork may be rotten. The result shows that using NIRS could indicate the freshness of meat quickly and non-invasively.
出处
《光谱学与光谱分析》
SCIE
EI
CAS
CSCD
北大核心
2006年第12期2193-2196,共4页
Spectroscopy and Spectral Analysis
基金
科技部"十五"攻关项目(02EFN216900720)
中国农业大学信息与电气学院创新基金项目(KY-06)资助