期刊文献+

基于改进模拟退火的神经网络降质图像恢复

Degraded image restoration using neural network based on improved simulated annealing
下载PDF
导出
摘要 随着科学技术的发展,图像处理技术已经成为科学研究不可或缺的强有力工具,而图像恢复是图像处理中非常重要的一环。传统基于模拟退火算法的神经网络降质图像恢复方法,为了避免退火过程过早收敛,对温度的降低不得不慢慢进行,这样导致算法运行时间太长。采用改进的含回火过程模拟退火算法降温,实验表明该改进算法求解时间比传统的方法有了很大的提高,图像的恢复效果也较令人满意,比传统的逆滤波、维纳滤波方法具有更好的峰值信噪比。 With the development of science and technology, the image processing technology already has become the scientific research indispensable powerful tool, but the image restoration is a very important link in the image processing. To avoid early convergence, degraded image restoration using neural network based on traditional simulated annealing has to decrease the temperature slowly, as a result, the algorithm has a long runtime. An improved simulated annealing algorithm which include a backfiring process is adopted. The experiments show that this algorithm is effective for image restoration and greatly reduces runtime. It has a higher PSNR than restoration algorithms of inverse filter and wiener filter and strengthens the quality of image restoration.
出处 《计算机工程与设计》 CSCD 北大核心 2006年第24期4684-4686,4698,共4页 Computer Engineering and Design
基金 湖南省教育厅科研基金项目(05C720)
关键词 图像恢复 人工神经网络 模拟退火算法 维纳滤波 峰值信噪比 image restoration artificial neural network simulated annealing wiener filter peak signal-to-noise ratio
  • 相关文献

参考文献7

二级参考文献81

共引文献137

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部