期刊文献+

Raptor Code预编码技术研究 被引量:11

Research on Precoding Method in Raptor Code
下载PDF
导出
摘要 在介绍LT Code的基础上,进一步探讨了Raptor Code。预编码技术是Raptor Code采用的核心技术,该技术能够克服LT Code解码代价不固定的缺点,有鉴于该文分析了多层校验预编码技术,并以此为基础提出基于RS Code的改进方法。该方法具有解码率高等优点,适合解决网络传输的安全问题。 On the basis of the introduction of the LT Code, this paper explores the Raptor Code. Precoding method is the essential part in the Raptor Code and can overcome the deficiency that time and space overhead is not fixed in the LT Code. It puts forward improving method based on RS Code through the analysis of the multiple levels precoding method. The improving method has many advantages such as high decoding rate and provides appropriate solution to the problem of safe transmissions in the Internet.
出处 《计算机工程》 CAS CSCD 北大核心 2007年第1期1-3,共3页 Computer Engineering
基金 国家自然科学基金资助项目(2004CB318000)
关键词 RAPTOR CODE LT CODE 预编码 Raptor Code LT Code Precoding
  • 相关文献

参考文献9

  • 1Luby M.LT-codes[C]// Proceedings of the 43^rd Annual IEEESymposium on the Foundations of Computer Science,2002:271-280.
  • 2Shokrollahi A.Raptor Codes[R].Digital Fountain,Technical Report,2003:1-37.
  • 3Luby M,Mitzenmacher M,Shokrollahi A.Practical Loss-resilient Codes[C]//Proceedings of the 43rd Annual IEEE Symposium on the Foundations of Computer Science,1997:150-159.
  • 4Gallager R G.Low Density Parity Check Codes[D].Cambridge:Cambridge University,1963.
  • 5David J,MacKay C.Good Error Correcting Codes Based on Very Sparse Matrices[J].Transaction on Information Theory,1999,45(3):399-431.
  • 6Luby M,Mitzenmacher M,Shokrollahi A,et al.Efficient Erasure Correcting Codes[J].IEEE Transaction on Information Theory,2001,47(2):569-584.
  • 7Di C,Proietti D,Telatar E,et al.Finite-length Analysis of Low-density Parity-check Codes on the Binary Erasure Channel[J].IEEE Transaction on Information Theory,2002,48(6):1570-1579.
  • 8Djurdjevic I,Jun Xu,Ghaffar K A.A Class of Low-density Parity-check Codes Constructed Based on Reed-solomon Codes with Two Information Symbols[J].IEEE Communication Letters,2003,7(7):317-319.
  • 9Orlitsky A,Urbanke R,Viswanathan K,et al.Stopping Sets and the Girth of Tanner Graphs[C]// Proc.of IEEE Symposium on Information Theory,2002.

同被引文献56

引证文献11

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部