期刊文献+

基于最长频繁闭项集的聚类算法 被引量:2

Clustering Algorithm Based on the Longest Frequent Closed Itemsets
下载PDF
导出
摘要 针对许多算法不适合对分类数据进行聚类的特点,提出了一种基于最长频繁闭项集(LFCI)的聚类算法。使用改造后的频繁模式树,得到每个事务的LFCI,由于LFCI的两个重要属性,因此可以将LFCI作为该事务的描述,从而直接得到聚类结果。实验证明了该算法的有效性。 Many clustering algorithms are not appropriate for categorical data. Therefore, a clustering algorithm based on the longest frequent closed itemsets (LFCIs) is presented. With the adaptation of traditional frequent-pattern tree, the LFCI of each transaction is found out accordingly. Due to two aspects of important attribute of LFCI, it can be considered as the description of the corresponding transaction. As a result, the clusters derive from LFCIs directly without a large intermediate set of frequent itemsets. The experiment results demonstrate the feasibility and robustness of this method.
作者 张泽洪 张伟
出处 《计算机工程》 CAS CSCD 北大核心 2007年第1期187-189,192,共4页 Computer Engineering
关键词 分类数据 聚类算法 闭项集 频繁模式树 Categorical data Clustering algorithm Closed itemsets Frequent-pattern tree
  • 相关文献

参考文献5

  • 1Kamber J H M.数据挖掘概念与技术[M].范明,孟小峰,译.北京:机械工业出版社,2001:223-259.
  • 2Grahne G,Zhu J F.Fast Algorithm for Frequent Itemset Mining Using FP-Trees[J].IEEE Trans.on Knowledge & Data Engineering,2005,17(10):1349-1350.
  • 3Guha S,Rastogi R,Shim K.ROCK:A Robust Clustering Algorithm for Categorical Attributes[C]//Proceedings of the 15^th International Conference on Data Engineering,Sydney,Australia,1999.
  • 4Andritsos P,Tsaparas P,Miller R J,et al.LIMBO:Scalable Clustering of Categorical Data[C]// Proceedings of the 9^th International Conference on Extending Database Technology,Crete,Greece,2004.
  • 5Newman D J,Hettich S,Blake C L,et al.UCI Repository of Machine Learning Databases[DB/OL].1998.http://www.ics.uci.edu/~mlearn/MLRepository.html.

同被引文献4

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部