期刊文献+

具有密度依赖的生育脉冲单种群阶段结构模型 被引量:6

STAGE-STRUCTURED MODEL OF A SINGLE-SPECIES WITH DENSITY-DEPENDENT BIRTH PULSES
原文传递
导出
摘要 给出具有密度依赖生育脉冲单种群阶段结构数学模型.通过研究其频闪映射所确定的离散动力系统,获得了具有生育脉冲的系统存在周期解及其稳定的阈值,当系统的参数超过阈值,存在一系列的分支并最终走向混沌,这说明生育脉冲使系统动力学行为变得非常复杂,提供了一个自然的周期,而使系统从倍周期分支到混沌. A stage-structured mathematical model of a single-species with density-dependent birth pulses is proposed. We abtain exact periodic solutions of the system with birth pulses and threshold for stablity of peridic solutions by studying the discrete dynamical system determinded by the stroboscopic map. When the parameter of the system exceeds the threshold, there is a characteristic sequence of bifurcations, leading to chaos. This illustrates that birth pulses reslut in the complexity of dynamical behavior of the system, provide a natural period, and allow for a period-doubling route leading to chaos.
出处 《系统科学与数学》 CSCD 北大核心 2006年第6期752-760,共9页 Journal of Systems Science and Mathematical Sciences
基金 国家自然科学基金(10171106)和(40372111)资助课题.
关键词 密度依赖 生育脉冲 阈值 分支 周期解 混沌 Density-dependent, birth pulse, threshold, bifurcation, periodic solution, chaos
  • 相关文献

参考文献11

  • 1Aiello W G,Freedman H I.A Time Delay of Single-Species Growth with Stage Structure.Math.Biosci.,1990,101:139-153.
  • 2Aiello W G,Freedman H I,Wu J.Analysis of a Model Representing Stage Structured Population Growth with State-Dependent Time Delay.SIAM Appl.Math.,1990,52:855-869.
  • 3Bainor D D,Simeonv P S.System with Implusive Effect:Stability,Theory and Application.New York,John Wiley & Sons,1989.
  • 4Lakmeche A,Arino D.Bifurcation of Trivial Periodic Solutions of Impulsive Differential Equations Arising Chemotherapeutic Treatment.Dynamics of Continuous,Discrete and Impulsive Systems,2000,7:165-287.
  • 5Panetta J C.A Mathematical Model of Periodically Pulsed Chemotherapy:Tumor Recurrence and Metastasis in a Competitve Environment.Bulletin of Math.Biol.,1996,58:425-447.
  • 6Shulgin B,Stone L,Agur I.Pulse Vaccination Strategy in The SIR Epidemic Model.Bulletin of Math.Biol.,1998,60:1-26.
  • 7Cushing J M.An Introduction to Structured Population Dynamics.CBMS-NSF Rcgional Conference Series in Applied Mathematics,1998,71:1-10.
  • 8Jury E I,Inners and stablity of dynamic systems.New York:Wiley,1974.
  • 9Aron J L.Seasonality Anel Period-Doubling Bifurcations in An Epidemic Model.J.Math.Biol.,1984,110:665-679.
  • 10Kaneko K.Similarity Structure And Scaling Property of The Period-Adding Phenomena.Proc.Theor.Phys.,1983,69:403-414.

同被引文献37

引证文献6

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部