期刊文献+

一种新的基于主分量排序的高维索引结构

New high-dimensional indexing structure based on principal component sorting
下载PDF
导出
摘要 利用KL变换的能量集中特性,改进了向量近似方法中的索引结构。在KL变换域上建立近似向量,选择能量最大的分量作为主分量,根据主分量值对近似向量进行顺序排列,并且用B+树存储每个数据页面中主分量值的范围。在k近邻搜索过程中,采用变换域部分失真搜索算法,从初始访问数据页面开始在升序和降序两个方向上顺序访问近似向量。改进的索引结构既保持了顺序访问特性,又大幅度降低了数据页面访问数量。在大型高维图像特征库上的实验表明,新的索引结构不仅降低了搜索过程的I/O时间,而且提高了CPU搜索速度。 The vector approximation approach is an efficient high-dimensional indexing method to overcome the difficulty of ‘curse of dimensionality'. A new high-dimensional indexing structure based on vector approximation method is introduced. The approximate vector is built at the KL transform domain, and the first component is chosen as the principal component. A sequence index is built based on the principal component, which uses B^+ tree to manage the approximate vectors. In the k-nearest neighbor search, the partial distortion searching algorithm is used to reject the improper approximate vectors. Only a small set of approximate vectors are ac cessed during the search, which reduces the computational complexity and I/O cost. The experimental results on large image databases show that the new approach renders a higher search speed than the well-known VA^+ -file approach.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2006年第12期1927-1931,共5页 Systems Engineering and Electronics
基金 "十五"国防科技(电子)预研基金资助课题(413160501)
关键词 高维索引 向量近似 近邻搜索 KL变换 主分量排序 high-dimensional indexing vector approximation neighbor search KL transform principal component sorting
  • 相关文献

参考文献13

  • 1Rui Y,Huang T S,Chang S F.Image retrieval:current techniques,promising directions,and open issues[J].Journal of Visual Communication and Image Representation,1999(10):36-92.
  • 2Bohm C,Berchtold S,Keim D.Searching in high-dimensional spaces-index structures for Improving the performance of multimedia databases[J].ACM Computing Surveys,2001,33(3):322-373.
  • 3Weber R,Schek H J,Blott S.A quantitative analysis and performance study for similarity-search methods in high-dimensional spaces[C]∥ Proc.24^th Int.Conf.VLDB,New York,IEEE,1998:194-205.
  • 4Indyk P,Motwani R.Approximate nearest neighbors:towards removing the curse of dimensionality[C]∥ Proc.30^th ACM Symposium on Theory of Computing,New York,ACM,1998:604-613.
  • 5Ferhatosmanoglu H,Tuncel E,Agrawal D.Vector approximation based indexing for non-uniform high dimensional data sets[C]∥ Proc.of the ACM Int'1 Conf.on Information and Knowledge Management.New York:ACM,2000:202-209.
  • 6叶航军,徐光祐.基于矢量量化的快速图像检索[J].软件学报,2004,15(5):712-719. 被引量:11
  • 7Berchtold S,Bohm C,Jagadish H V,et al.Indepentent quantization:an index compression technique for high-dimensional data spaces[C]∥Proc.of IEEE Data Engineering,San Diego,2000:577-588.
  • 8Cha G H,Chung C W.The GC-tree:a high-dimensional index structure for similarity search in image databases[J].IEEE Trans.on Multimedia,2002,4(2):235-247.
  • 9Berchtold S,Bohm C,Keim D A,et al.On optimizing nearest neighbor queries in high-dimensional data spaces[C]∥Proc.Int.Conf.on Database Theory,London,in:Lecture Notes in Computer Science,Springer,2001,1973:435-449.
  • 10Beyer K S,Goldstein J,Ramakrishnan R.When is 'nearest neighbor'meaningful?[C]∥ Proc.7^th Int.Conf.on Database Theory.1540:Lecture Notes in Computer Science,Springer,1999,1540:217-235.

二级参考文献18

  • 1Rui Y, Huang TS, Chang SF. Image retrieval: Current techniques, promising directions and open issues. Journal of Visual Communication and Image Representation, 1999,10(4):39-62.
  • 2Rui Y, Huang TS, Ortega M, Mehrotra S. Relevance feedback: A power tool for interactive content-based image retrieval. IEEE Trans. on Circuits and Systems for Video Technology, 1998,8(5):644-655.
  • 3Nievergelt J, Hinterberger H, Sevcik K. The gridfile: An adaptable symmetric multikey file structure. ACM Trans. on Database Systems, 1984,9(1):38-71.
  • 4Robinson J. The k-d-b-tree: A search structure for large multidimensional dynamic indexes. In: Edmund YL, ed. Proc. of the ACM SIGMOD Int'l Conf. on Management of Data. New York: ACM Press, 1981.10-18.
  • 5Beckmann N, Kriegel HP, Schneider R, Seeger B. The R*-tree: An efficient and robust access method for points and rectangles. In:Garcia-Molina H, Jagadish HV, eds. Proc. of the ACM SIGMOD Int'l Conf. on Management of Data. New York: ACM Press, 1990.322~33
  • 6Katayama N, Satoh S. The SR-tree: An index structure for high-dimensional nearest neighbor queries. In: Peckham J, ed. Proc. of the ACM SIGMOD Int'l Conf. on Management of Data. New York: ACM Press, 1997. 369~380.
  • 7Weber R, Schek H, Blott S. A quantitative analysis and performance study for similarity-search methods in high-dimensional spaces. In: Gupta A, Shmueli O, Widom J, eds. Proc. of the 24th ACM Int'l Conf. on Very Large Data Bases (VLDB'98). New York: Morgan
  • 8Beyer K, Goldstein J, Ramakrishnan R. When is ‘nearest neighbor' meaningful? In: Beeri C, Buneman P, eds. Proc. of the 7th ACM Int'l Conf. on Database Theory (ICDT'99). Lecture Notes in Computer Science 1540, Berlin: Springer-Verlag, 1999.217~235.
  • 9Scott DW. Multivariate Density Estimation. New York: John Wiley and Sons, 1992.
  • 10Gersho A, Gray RM. Vector Quantization and Signal Compression. Boston: Kluwer Academic Press, 1992.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部