期刊文献+

一种基于离散小波变换和支持向量机的人脸识别新方法 被引量:1

Novel face recognition method based on DWT and SVM
下载PDF
导出
摘要 为提高人脸识别系统的性能,提出了一种基于离散小波变换DW T(d iscrete w avelet transform)特征提取和支持向量机(SVM)分类的人脸识别方法。首先,采用DW T对人脸图像进行降维和去噪,然后,对小波低频子图像进行核辨别分析(KDA)提取人脸特征,最后,结合SVM进行分类识别。基于该方法,对ORL人脸库进行分类识别,采用39个特征识别率达到98.2%。仿真结果表明,该方法明显减少了高频干扰对人脸特征的影响,增强了特征的辨别能力。而且,SVM有效地提高了分类器的分类和推广能力。 To improve the performance of face recognition system, a novel face recognition method based on discrete wavelet transform (DWT) and support vector machine was presented. The raw face images were denoised by the DWT at first. Then the kernel discriminant analysis (KDA) was performed on the waveletfaces to enhance discriminant power. Finally, the support vector machine (SVM) was selected to perform face classification. Experimental results on ORL face database show that the proposed method achieves a recognition accuracy of 98.2% using only 39 features.
出处 《解放军理工大学学报(自然科学版)》 EI 2006年第6期515-519,共5页 Journal of PLA University of Science and Technology(Natural Science Edition)
基金 江苏省"图像处理与图像通信"高校重点实验室资助项目(KJS03036)
关键词 人脸识别 小波分析 核辨别分析 支持向量机 face recognition wavelet analysis KDA(kernel discriminant analysis) SVM (support vector machine)
  • 相关文献

参考文献12

  • 1NICHOLAS R, LI Xiaobo. Accuracy analysis for facial feature detection[J]. Pattern Recognition, 1996,29 (1) :143-]57.
  • 2TURK M A, PENTLAND A P. Eigenfaces for recognition[J]. J Cognitive Neurosci, 1991, 3(1):71-86.
  • 3BELHUMEUR P N, HESPANHA j P, KRIEGMAN D J. Eigenfaces vs fisherfaces: recognition using class specific linear projection[J]. IEEE Trans on PAMI,1997, 19(7) ,711-720.
  • 4CHIEN J T, WU C C. Discriminant waveletfaces and nearest feature classifiers for face recognition [J].IEEE Trans on PAMI, 2002, 24(12):1644-1649.
  • 5MIKA S, RATSCH G. Fisher discriminant analysis with kernels [J]. IEEE International Workshop on Neural Networks for Signal Processing, 1999, IX: 41-48.
  • 6BAUDAT G, ANOUAR F. Generalized discriminant analysis using a kernel approach[J]. Neural Computation, 2000, 12(10): 40-42.
  • 7YANG M H. Kernel eigenfaces vs kernel fisherfaces: face recognition using kernel methods [C]. Washington D C: IEEE Computer Society, 2002.
  • 8VAPNIK V. The nature of statistical learning theory[M]. New York:Wiley, 1998
  • 9张燕昆,杜平,刘重庆.基于主元分析与支持向量机的人脸识别方法[J].上海交通大学学报,2002,36(6):884-886. 被引量:48
  • 10LI Bai, LIU Yi-hui. When eigenfaces are combined with wavelets[J]. Knowledge-based system, 2002,15(6): 343-347.

二级参考文献17

  • 1洪子泉,杨静宇.基于奇异值特征和统计模型的人像识别算法[J].计算机研究与发展,1994,31(3):60-65. 被引量:49
  • 2彭辉,张长水,荣钢,边肇祺.基于K-L变换的人脸自动识别方法[J].清华大学学报(自然科学版),1997,37(3):67-70. 被引量:69
  • 3Nicholas Roeder. LI Xiaobo. Accuracy analysis for facial feature detection, Pattern Recognition, 1996, 29(1): 143~157
  • 4Turk MA, Pentland A. Face recognition using eigenfaces. In: Proceedings of International Conference on Computer Vision and Pattern Recognition, Maui, HI, 1991. 586~591
  • 5Hong Z Q. Algebraic feature extraction of image recognition. Pattern Recognition, 1991, 24(3): 211~219
  • 6Yuille A, Hallinen P, Cohn D. Feature extraction from faces using deformable temples. International Journal of Computer Vision, 1992, 8(2):99~111
  • 7Baum L E, Petrie T. Statistical inference for probabilistic functions of finite Markov chains. The Annals of Mathematical Statistics, 1966, 37(11):1554~1563
  • 8Baum L E, Egon J A. An inequality with applications to statistical estimation for probabilistic functions of a Markov process and to a model for ecology. Bulletin of American Meteorological Society, 1967, 73(2): 360~363
  • 9Baum L E. An inequality and associated maximization technique in statistical estimation for probabilistic functions of Markov processes. Inequalities, 1972,3(1): 1~8
  • 10Rabiner L R. A tutoral on hidden Markov model and selected applications in speech recognition. Proceedings of the IEEE, 1989, 77(2): 257~28

共引文献82

同被引文献12

  • 1王雪峰,周国标.基于SVM的人脸识别方法研究[J].上海应用技术学院学报(自然科学版),2006,6(2):104-107. 被引量:5
  • 2刘小伟,霍静.一种基于有限脊波变换的数字图像水印算法[J].贵州教育学院学报,2006,22(4):7-11. 被引量:1
  • 3Reillo R S. Glossary of Biometrics Terms[ R]. Association for Biometric(AfB) ,International Computer Security Association ( ICSA), 1998.
  • 4Kall E K, Anilk J. Fingerprint classification [ J ]. Pattern Recognition, 1996 (3) :389-404.
  • 5Chien J T , Wu C C. Discriminant waveletfaces and nearest feature classifiers for face recognition [ J ]. IEEE Trans on PAMI, 2002,24 ( 12 ) : 1644 - 1649.
  • 6Baudt G,Anouar F. Generalized discriminant analysis using a kernel approach[J].Neural Computation ,2000,12 (10) : 2385 -2404.
  • 7Mika S, Ratsch G. Fisher discriminant analysis with kernels [ C ]//IEEE International Workshop on Neural Networks for Signal Processing IX, 1999:41-48.
  • 8Lee H C, Gaensslen R E. Advances in Fingerprint Technology[ M]. New York :Elsevier, 1991.
  • 9Anil Jain, Lin Hong. Integrating faces and fingerprints for personal identification [ J ]. IEEE Trans on PAMI, 1998,20 (12) :1295-1307.
  • 10Ribaric S, Ribaric D, Pavesic N. Multimodal biometric user-identification system for network-based applications [ J ]. Image Signal Process IEEE Proc. 2003,150 (6) :409-416.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部