期刊文献+

构造相应于有限维非退化可解李代数的顶点代数 被引量:4

Vertex Algebra Associated to Nondegenerate Solvable Lie Algebras
下载PDF
导出
摘要 设g是带有非退化不变对称双线性型的有限维可解李代数,该文首先应用g的仿射李代数g的表示理论,构造出一类水平为l的限制g-模Vg(l,0).然后应用顶点算子的局部理论在hom(Vg(l,0),Vg(l,0)((x)))中找到一类顶点代数LVg(l,0).建立了LVg(l,0)到Vg(l,0)的映射,最后证明了这类映射是顶点代数同构. The main purpose of this article is to construct the vertex algebra of associated to finite-nondegenerate solvable Lie algebra. Avoid the notion of module of vertex algebra and tire some the Jacobi identity. Apply the equivalent condition with the Jacobi identity:the weak commutativity and the D-derivatve-bracket formula. On the theorems of the representation of finite-nondegenerate solvable Lie algebra g and the level l restricted module of the affine algebra g of g. Construct and prove a kind the vertex algebras, which equipped the structure of different with that the vertex algebra of associated to Heisenberg algebra and non-twist Kac-moody algebra.
作者 王书琴
出处 《数学物理学报(A辑)》 CSCD 北大核心 2006年第B12期1008-1024,共17页 Acta Mathematica Scientia
基金 黑龙江省自然科学基金 黑龙江省教育厅科学技术研究项目资助
关键词 非退化可解李代数的顶点代数 水平为l的限制g-摸 Jacobi-等式及弱交换性和D-导子-换位公式 顶点代数同构 The level l restricted module of the affine algebra g The vertex algebra of associated to finite-nondegenerate solvable Lie algebra Jacobi-identity and the weak associativity and the D-derivative-bracket formulas.
  • 相关文献

参考文献10

  • 1Wang Shuqin. Construction of the vertex operator algebra of associated to finite nondegernerate solvable Lie algebra. Acta Math Sin, 2005, 48(5): 867-878
  • 2Lepowsky J, Li Haisheng. Introduction to Vertex Operator Algebra and their Representation. Boston: Birkhauser, 2003
  • 3Wang Shuqin. A kind of nilpotent Lie algebra with nondegenerate invariant bilinear form. Acta Math Sin, 2000, 43(3): 561-568
  • 4Li Haisheng. Local systems of vertex operators Vertex superalgebras and Modules. J Pure ApplAlgebra, 1996, 109: 143-195
  • 5Dong Chongying. Vertex algebras associated with even lattices. J Algebra 1993, 160: 245-265
  • 6Lu Caihui. Finite solvable Lie algebra with nondegenerate invarianr symmetric billinear form. Acta Math Sin, 1992, 35(1): 121-132
  • 7Frenkel I B, Lepowsky J, Meurman A. Vertex operator algebras and the monster. Pure and Applied Math, 1988, 134
  • 8Borcherds R E. Vertex algebras, Kac-Moody algebras, and the monster.Proc Nat Acad Sci U S A, 1986, 83: 3068-3071
  • 9Wan Zhexian. Introduction to Kac-Moody Algebra. Beijing: Science Publishers, 1993
  • 10Huphreys J E. Introduction to Lie algebras and Representation Theory. Graduate Text of Mathematics 9. New York: Springer-Verlag, 1972

同被引文献13

  • 1王书琴.有限维非退化可解李代数的顶点算子代数[J].数学学报(中文版),2005,48(5):867-878. 被引量:5
  • 2LepowskyL.,Li.H.S.Introduction to vertex algebra and their Representation.Progress in Math.,Boston:Birkhauser,2003,227.
  • 3Huphreys J E.Introduction to Lie algebras and Representation Theory.Graduate Text of Math-ematics 9.New York:Springer-Verlag,1972.
  • 4万哲先.Kac-Moody代数导引.北京:科学出版社,2002.
  • 5Lepowsky L, Li H S. Introduction to vertex operator algebra and their Representation. Progress in Math. , 2003(227) Booton : Birkhausser.
  • 6Wang Shuqin. A kind of nilpotent Lie algebra with nondegenerate invariant bilinear form. Acta Math Sin, 2000, 43(3) : 561 - 568.
  • 7[2]Lepowsky L.,Li H.S.Introduction to vertex operator algebra and their representation、 Progress in Math.,227,Boston:Birkhausser,2003.
  • 8[3]万哲先.Kac-Moody代数导引.科学出版社,2002.
  • 9[美]J.E.汉弗莱斯.李代数及其表示理论导引.上海:上海科技出版社出版,1981.8.
  • 10V. G. Kae, Infinite dimensional Lie algebras. CAMBRIDGE UNIVERSITY PRESS, Third edition.

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部