摘要
设g是带有非退化不变对称双线性型的有限维可解李代数,该文首先应用g的仿射李代数g的表示理论,构造出一类水平为l的限制g-模Vg(l,0).然后应用顶点算子的局部理论在hom(Vg(l,0),Vg(l,0)((x)))中找到一类顶点代数LVg(l,0).建立了LVg(l,0)到Vg(l,0)的映射,最后证明了这类映射是顶点代数同构.
The main purpose of this article is to construct the vertex algebra of associated to finite-nondegenerate solvable Lie algebra. Avoid the notion of module of vertex algebra and tire some the Jacobi identity. Apply the equivalent condition with the Jacobi identity:the weak commutativity and the D-derivatve-bracket formula. On the theorems of the representation of finite-nondegenerate solvable Lie algebra g and the level l restricted module of the affine algebra g of g. Construct and prove a kind the vertex algebras, which equipped the structure of different with that the vertex algebra of associated to Heisenberg algebra and non-twist Kac-moody algebra.
出处
《数学物理学报(A辑)》
CSCD
北大核心
2006年第B12期1008-1024,共17页
Acta Mathematica Scientia
基金
黑龙江省自然科学基金
黑龙江省教育厅科学技术研究项目资助
关键词
非退化可解李代数的顶点代数
水平为l的限制g-摸
Jacobi-等式及弱交换性和D-导子-换位公式
顶点代数同构
The level l restricted module of the affine algebra g
The vertex algebra of associated to finite-nondegenerate solvable Lie algebra
Jacobi-identity and the weak associativity and the D-derivative-bracket formulas.