期刊文献+

CLASSIFICATION OF A CLASS OF HYPERBOLIC REINHARDT DOMAINS

CLASSIFICATION OF A CLASS OF HYPERBOLIC REINHARDT DOMAINS
下载PDF
导出
摘要 In this article, the author discusses the dimension of holomorphic automorphism groups on hyperbolic Reirihardt domains. and classifies those hyperbolic Reinhardt domains whose automorphism group has prescribed dimension n2 - 2 (where n is the dimension of domain). In this article, the author discusses the dimension of holomorphic automorphism groups on hyperbolic Reinhardt domains, and classifies those hyperbolic Reinhardt domains whose automorphism group has prescribed dimension n^2 - 2 (where n is the dimension of domain).
作者 严荣沐
出处 《数学物理学报(A辑)》 CSCD 北大核心 2006年第B12期1083-1088,共6页 Acta Mathematica Scientia
基金 Supported by the National Natural Science Foundation of China (10501036)the Natural Science Foundation of Fujian Province of China (Z0511003).
关键词 代数自同构 全纯自同构 双曲型赖恩哈特域 自同构群 Hyperbolic Reinhardt domain Holomorphic automorphism Algebraic automorphism
  • 相关文献

参考文献7

  • 1Kruzulin N G. Holomorphic automorphisms of hyperbolic Reinhardt domains. Math USSR-Izv, 1989, 32: 15-38
  • 2Gifford J A, Isaev A V, Krantz S G. On the dimensions of the automorphism groups of hyperbolic Reinhardt domains. Illinois J of Math, 2000, 44(3): 602-618
  • 3Isaev A V, Krantz S G. Hyperbolic Reinhardt domains in C^2 with noncompact automorphism group. Pacific J of Math, 1998, 184(1): 149-160
  • 4Isaev A V, Krantz S G. Domains with non-compact automorphism group,a survey. Adv in Math, 1999, 146: 1-38
  • 5Kobayashi S. Hyperbolic Manifolds and Holomorphic Mappings. New York: Dekker, 1970
  • 6Kobayashi S. Intrinsic distances,measures and geometric function theory.Bull Amer Math Soc, 1976, 82: 357-416
  • 7Poletskii E A, Shabat B V. Invariant Metrics (translated from Russian). In ''Encycl Math Sci" 1989, 9: 63-111. New York, Berlin: Springer-Verlag

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部