期刊文献+

几类冠图的邻强边色数 被引量:10

Adjacent Strong Edge Chromatic Number of Some Corona Graphs
下载PDF
导出
摘要 图的强染色来自计算机科学,有着很强的实际背景,但确定图的强色数是非常困难的。张忠辅,刘林忠,王建方等研究了图的邻强边染色,并提出了邻强边染色猜想:对任意连通图G G,|V|≥3且G≠C5有Δ≤χa′s(G)≤Δ+2。研究了树、圈、扇、轮、完全二部图及完全图的冠图的邻强边色数;证明了:Δ≤χa′s(G)≤Δ+1,且χa′s(G)≤Δ+1当且仅当G[VΔ]≠Φ。 The strong edge coloring of graphs comes from computer science and has a very strong practical background, but it is very difficult to determine its strong chromatic number for any graphs. Zhang Zhongfu, Liu Linzhong, Wang Jianfang et al. have studied the adjacent strong edge coloring of graphs and put forward the adjacent strong edge coloring conjecture: for any connected graph G, | V | ≥3 and G≠ C5, there is △≤X'as( G)≤△ + 2. This paper studied the adjacent strong edge chromatic numbers of the corona graphs with trees, cycles, fans, wheels, complete bipartite graphs, complete graphs, and proved:△≤X'as (G)≤△ +1, and X'as(G)≤△ +1 iff G[V△]≠Ф.
出处 《山东科技大学学报(自然科学版)》 CAS 2006年第4期101-103,共3页 Journal of Shandong University of Science and Technology(Natural Science)
关键词 邻强边染色 邻强边色数 冠图 adjacent strong edge coloring adjacent strong edge chromatic number corona graph
  • 相关文献

参考文献11

二级参考文献23

  • 1陈东灵,刘西奎,王淑栋.图的关联色数和关联着色猜想[J].经济数学,1998,15(3):47-51. 被引量:29
  • 2李敬文,刘君,包世堂,任志国,赵传成,张忠辅.C_m·F_n的邻点可区别边色数[J].兰州交通大学学报,2004,23(4):128-130. 被引量:7
  • 3Zhang Zhongfu,Scientia Sinica (Science in China) Series A,1988年,18卷,12期,1434页
  • 4LIU Lin-zhong, ZHANG Zhong-fu, WANG Jian-fang. The adjacent strong edge chromatic number of outerplanar graphs of△(G) ≤ 4 [J]. Appl. Math. J. Chinese Univ., Ser. A, 2000, 15(2): 139-146.
  • 5MA De-shan, LIU Lin-zhong, ZHANG Zhong-fu. On the adjacent strong edge coloring of 1-tree [J]. J. Math.Res. Exposition, 2000, 20: 299-305.
  • 6DUFFIN R J. Topology of series-parallel networks [J]. J. Math. Anal. Appl., 1965, 10: 303-318.
  • 7DIRAC G A. A property of 4-chromatic graphs and some results on critical graphs [J]. J. London Math. Soc.,1952, 27: 85-92.
  • 8SEYMOUR P D. Coloring the series-parallel graphs [J]. Combinatorica, 1990, 10(4): 379-392.
  • 9WU J L. The linear arboricity of series-parallel graphs [J]. Graph and Combinatorics, 2000, 16: 367-371.
  • 10BONDY J A, MURTY U S R. Graph Theory with Application [M]. the Macmillan, Press Ltd, 1976.

共引文献32

同被引文献42

引证文献10

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部