期刊文献+

单靶磁控溅射Cu1-xCrx(x=1.19~2.37)薄膜的制备 被引量:3

Preparation of Cu_(1-x)Cr_x(x=1.19-2.37) films by magnetron sputtering single target
下载PDF
导出
摘要 利用简易合金靶材在Si(100)基底上单靶磁控溅射制备Cu1-xCrx(x=1.19~2.37,摩尔分数,%)薄膜。研究不同名义成分的合金靶材得到的溅射态薄膜的成分、电学性能、组织结构及表面状态。研究结果表明:利用简易合金靶材制备的Cu1-xCrx薄膜成分可控。Cr的加入增强了溅射态薄膜的(111)织构,且随着薄膜厚度的增加,(111)织构增强;855nm厚的Cu-2.37%Cr薄膜的(111)与(200)的峰强比高达8.48;合金元素Cr显著影响溅射态薄膜的表面状态(平整性和致密度)和电阻率;随着Cr含量的增加,前者呈现先升高后下降的趋势,而薄膜电阻增加;Cu-2.18%Cr薄膜由于应力增加局部产生微裂纹,薄膜连续性下降。并从薄膜生长动力学以及自由能的角度对上述结果进行了初步的阐述。 CU1-xCrx films(x= 1.19 -2.37, mole fraction, %) were deposited on the Si (100) substrate by magnetron sputtering using a single alloy target. The concentration, electrical resistivity, microstructure and morphology of films deposited by targets with different nominal Cr concentration were investigated. The results show that the concentrations of films are predictably. Cr intensifies the (111) texture which increases with increasing thickness of films. The peak strength ratio of (111) to (200) of Cu-2.37%Cr film with thickness of 855 nm is 8. 48. As the concentration of Cr increases, the smoothness and compactness of films increase firstly whereas then decrease subsequently, while the electrical resistivity keeps on increasing. The continuity of Cu-2.18%Cr film decreases due to the formation of micro-crack. These results are explained in the view of the dynamics of film growth and energy.
出处 《中国有色金属学报》 EI CAS CSCD 北大核心 2006年第11期1876-1881,共6页 The Chinese Journal of Nonferrous Metals
基金 上海应用材料研究发展基金资助项目(0412)
关键词 Cu1-xCrx薄膜 磁控溅射 溅射态 织构 Cu1-xCrx films magnetron sputtering as-deposited texture
  • 相关文献

参考文献16

  • 1Chu J P,Lin T N.Deposition,microstructure and properties of sputtered copper films containing insoluble molybdenum[J].Journal of Applied Physics,1999,85(9):6462-6469.
  • 2Gungor A,Barmak K,Rollett A D.Texture and resistivity of dilute binary Cu(Al),Cu(In),Cu(Ti),Cu(Nb),Cu(Ir),and Cu(W) allow thin films[J].J Vac Sci Technol,2002,B20(6):2314-2319.
  • 3Barmak K,Lucadamo G A,Cabral C,et al.Dissociation of dilute immiscible copper alloy thin films[J].Journal of Applied Physics,2000,87 (5):2204 -2214.
  • 4Cabral C,Harper J M E Jr,Holloway K,et al.Preparation of low resistivity Cu-1at.% Cr thin films by magnetron sputtering[J].J Vac Sci Technol,1992,A10(4):1706-1722.
  • 5Harper J M E,Rodbell K P.Microstructure control in semiconductor metallization[J].J Vac Sci Technol,1997,B15:763-779.
  • 6Kamijo T,Furukawa T,Watanabe M.Homogeneous nucleation of coherent precipitation in copper-chromium alloys[J].Acta Metall,1987,36:1763-1769.
  • 7Detavernier C,Deduytsche D,Van Meirhaeghe R L,et al.Room-temperature grain growth in sputter-deposited Cu films[J].Applied Physics Letters,2003,82(12):1863-1865.
  • 8王春青,田艳红,孔令超,等.电子封装和组装中的微连接技术[EB/OL].http://mwjl.hit.edu.cn/micro/pdf_files/conclusion/microjoining-9.pdf.2005WANG Chun-qing,TIAN Yan-hong,KONG Ling-chao,et al.Microjoining Technology in Electronics Packaging and Assembly[EB/OL].http://mwjl.hit.edu.cn/micro/pdf_files/conclusion/microjoining-9.pdf,2005.
  • 9Kim J,Wen S H,Yee D.Coevaporation of Cr-Cu and Mo-Ag[J].J Vac Sci Technol,1988,A6(4):2366-2370.
  • 10Machlin E S.Lattice energy functions for prediction of structural properties OF alloys phases[J].Proc Mater Res Soc Symp,1983,19:67 -80.

二级参考文献17

  • 1Liu W C, Shi S Q, Woo C H, Huang H. Comput Modei Eng Sci, 2002; 23:155
  • 2Parrinello M, Rahman A. J Appl Phys, 1981; 52:7182
  • 3Toxvared S. Phys Rev, 1993; 47E: 343
  • 4Dong L, Srolovitz D J. J Appl Phys, 1998; 84:5261
  • 5Ying F, Smith R W, Srolovitz D J. Appl Phys Lett, 1996;69:3007
  • 6Zhou L, Wei X Q. J Mater Sci, 1998; 33:1487
  • 7Zhou X W, Wadley H N G. Acta Mater, 1999; 47:1063
  • 8Tracy D P, Knorr D B. J Electron Mater, 1993; 22:611
  • 9Gilmer G H, Huang H, de la Rubia T D, Torre J D, Baumann F. Thin Solid Films, 2000; 365:189
  • 10Stearns M B, Lee C H, Chang C-H, Petford-Long A K. In:Hong M, Wolf S, Gubser D C eds., Metallic Multilayers and Epitaxy, Warrendale, PA: TMS, 1988:55

共引文献8

同被引文献46

  • 1Lin X W, Pramanlk D. Future interconnect technologies and copper metallization[J]. Solid State Technology, 1998, 41(10): 63-79.
  • 2Hu C K, Harper J M E. Copper interconnections and reliability[J]. Materials Chemistry and Physics, 1998, 52(1): 5-16.
  • 3Harper J M E, Rodbell K E Microstructure control in semiconductor metallization[J]. J Vac Sci Technol, 1997, B15: 763-779.
  • 4Barmak K, Lucadamo G A, Cabml C Jr, Lavoie C, Harper J M E. Dissociation of dilute immiscible copper alloy thin films[J]. Journal of Applied Physics, 2000, 87(5): 2204-2214.
  • 5Gungor A, Barmak K, Roller A D. Texture and resistivity of dilute binary Cu(Al), Cu(In), Cu(Ti), Cu(Nb), Cu(Ir), and Cu(W) allow thin films[J]. J Vac Sci Technol, 2002, B20(6): 2314-2319.
  • 6Liu C J, Jeng J S, Chen J S, Lin Y K. Effects of Ti addition on the morphology, inteffacial reaction, and diffusion of Cu on SiOE[J]. J Vac Sci, 2002, B20(6): 2361-2366.
  • 7Hong S J, Lee S, Yang H J, Lee H M, Ko Y K, Hong H N, Soh H S, Kim C K, Yoon C S, Ban K S, Lee J G. Effects of the dissolved oxygen in Ti films on Ti reactions in Cu/Ti/SiO2/Si system upon annealing[J]. Semicond Sci Technol, 2004, 19(11):1315-1321.
  • 8Kim J, Wen S H, Yee D. Coevaporation of Cr-Cu and Mo-Ag[J].J Vac Sci Technol, 1988, A6(4): 2366-2370.
  • 9Cabml C Jr, Harper J M E, Holloway K, Smith D A, Schad R G. Preparation of low resistivity Cu-1%Cr thin films by magnetron sputtering[J]. JVac Sci Technol, 1992,A10(4): 1706-1722.
  • 10Detavemier C, Deduytsche D, van Meirhaeghe R L, de Baerdemaeker J, Dauwe C. Room-temperature grain growth in sputter-deposited Cu films[J]. Applied Physics Letters, 2003, 82(12): 1863-1865.

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部