期刊文献+

一种基于独立成分分析和最小最大概率机的人脸识别系统 被引量:1

A Face Recognition System Based on Independent Component Analysis and Minimax Probability Machine
下载PDF
导出
摘要 提出了一种基于独立成分分析和最小最大概率机的人脸识别系统。该系统首先从摄像头中捕捉包含人脸的实时图像,利用haar特征人脸检测算法定位人脸区域,并将其从原始图像中分割出来。为了更好地提取有效特征,采用了ICA的特征提取方式,结合改进误差估计的最小最大概率机的分类方法对输入的测试图像进行识别。实验证明,该系统能够快速有效地处理实时状态下的人脸识别任务,准确率达到了96.8%,并且对多姿态的人脸具有一定的鲁棒性。 A face recognition system based on independent component analysis and minimax probability machine is proposed. First,capture the image through the camera, locate and segment the face region from the original image based on the haar feature algorithm. Then,normalization and lighting compensation is worked on the face image. In order to get more efficiency features,the ICA method is used. At last, use the improved minimax probability machine to categorize the face image. The experiment shows that,the system is competent for face recognition, the accuracy reach to about 96.8%,and is insensitive to multi - view face,
作者 阮揆 孙即祥
出处 《现代电子技术》 2007年第1期134-137,共4页 Modern Electronics Technique
关键词 人脸识别 HAAR特征 独立成分分析(ICA) 最小最大概率机(MPM) face recognitions haar feature Independent Component Analysis(ICA) Minimax Probability Machine(MPM)
  • 相关文献

参考文献6

  • 1梁路宏,艾海舟,徐光祐,张钹.人脸检测研究综述[J].计算机学报,2002,25(5):449-458. 被引量:355
  • 2Turk M A,Pentland A P.Eigen Faces for Recognition[J].Journal of Cognitive Neuroscience,1991,3(1):71-86.
  • 3Paul Viola,Michael J Jones.Rapid Object Detection Using a Boosted Cascade of Simple Features[C].IEEE CVPR,2001:511-518.
  • 4Rainer Lienhart,Jochen Maydt.An Extended Set of Haar-like Features for Rapid Object Detection[J].Intel Labs,Intel Corporation,2002,1:900-903.
  • 5Lanckriet G R G,El Ghaoui L,Bhattacharyya C,et al.Minimax probability machine.in Pro.Advances in Neural Information Processing System,2002.
  • 6Lanckriet G R G,L El Ghaoui,Bhattacharyya C,et al.A robust Minimax Approach to Classification[J].Journal of Machine Learning Research,2002,3:552-582.

二级参考文献61

  • 1Craw I, Ellis H, Lishman J. Automatic extraction of face features. Pattern Recognition Letters, 1987, 5(2):183-187
  • 2Yang G Z, Huang T S. Human face detection in a complex background. Pattern Recognition, 1994, 27(1):53-63
  • 3Dai Y, Nakano Y. Face-texture model based on SGLD and its application in face detection in a color scene. Pattern Recognition, 1996, 29(6):1007-1017
  • 4Kouzani A Z, He F, Sammut K. Commonsense knowledge-based face detection. In: Proc Conference on Intelligent Engineering Systems, Budapast, Hungary, 1997. 215-220
  • 5Garcia C, Tziritas G. Face detection using quantized skin color regions merging and wavelet packet analysis. IEEE Trans Multimedia, 1999, 1(3):264-277
  • 6Sun Q B, Huang W M, Wu J K. Face detection based on color and local symmetry information. In: Proc Conference Automatic Face and Gesture Recognition, Nara, Japan, 1998. 130-135
  • 7Kim S H, Kim H G. Face detection using multi-modal information. In: Proc Conference on Automatic Face and Gesture Recognition, Grenoble, France, 2000. 70-76
  • 8Govindaraju V, Srihari S N, Sher D B. A computational model for face location. In: Proc IEEE Conference on Computer Vision, Osaka, Japan, 1990. 718-721
  • 9Lam K M. A fast approach for detecting human faces in a complex background. In: Proc Symposium on Circuits and Systems, Monterey, 1998, 4:85-88
  • 10Yow K C, Cipolla R. A probabilistic framework for perceptual grouping of features for human face detection. In: Proc Conference on Automatic Face and Gesture Recognition, Killington, Vermont, USA, 1996. 16-21

共引文献354

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部