期刊文献+

一种改进的SVM支持向量分类方法 被引量:2

An Improved SVM
下载PDF
导出
摘要 提出了一种改进的支持向量分类方法,根据支持向量机中支持向量不会出现在两类样本集间隔以外的正确划分区的理论,通过引入类质心距等概念,从而较好地解决了当两类样本集混淆严重的时候如何更加精确地进行剔除混淆点,保证算法泛化性的问题。实验表明,采用这种改进的算法在两类训练样本集混淆较严重时能较好地解决泛化性问题。 A new method of Support Vector Machine(SVM) is presented in this paper. Because support vector will not appear in the area which is out of inteval between two classes ,the algorithm introduces some new concepts such as class - centroid, class - radius class -centroid -distance. With these concepts we can delete those test samples which are not Supprot Vectors(SV) quickly and exactly. We also improve K - Nearest Neighbour(KNN). With the new concept named class - centripetal force, we solve problem that delete promiscuous test example exactly, and keep the generalization. The experiments show that the advanced algorithm can achieve the excepted target.
作者 孟海涛 刘鹏
出处 《现代电子技术》 2007年第1期150-152,共3页 Modern Electronics Technique
关键词 支持向量机 类向心度 样本集 KNN support vector machine class - centroid - distance sample classes KNN
  • 相关文献

参考文献6

二级参考文献20

  • 1李红莲,王春花,袁保宗,朱占辉.针对大规模训练集的支持向量机的学习策略[J].计算机学报,2004,27(5):715-719. 被引量:53
  • 2Vapnik V N. An Overview of Statistical Learning Theory. IEEE Trans . on NN,1999,10(3): 988-999.
  • 3Nello C,John S T. An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. Cambridge University Press,2000.
  • 4Nakaya A,Furuukawa H,Morishita S. Weighted Majority Decision Among Several Region Rules for Scientific Discovery. Discovery Science,1999: 17-29.
  • 5Gestel T V. Benchmarking Least Squares Support Vector Machines Classifier. http://www. Citeseer. Nj.nec.com,2001.
  • 6Meyer D,Leisch F,Hornik K. Benchmarking Support VectorMachines. http://www. wu-wien. Ac. at/am/download/report78. pdf,2002.
  • 7Auer P,Burgsteiner H,Maass W. Reducing Communication for Distributed Learning in Neural Network. In Article Neural Neworks -ICANN 2001,Springer-Verlag,2001.
  • 8M. Pontil and A. Verri. Support vector machines for 3-d object recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998,20(6):637-646.
  • 9卢增祥 李衍达.交互支持向量机学习算法及其应用[J].万方数据资源系统[DB].,1999.
  • 10Hearst M.A., Dumais S.T., Osman E., Platt J., Scholkopf B.. Support vector machines. IEEE Intelligent Systems, 1998, 13(4): 18~28

共引文献193

同被引文献17

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部