期刊文献+

一个带Hardy项的椭圆方程的多重解(英文)

Multiple Solutions for a Nonlinear Elliptic Equation with Hardy Term
下载PDF
导出
摘要 通过对偶变分方法证明了一个带Hardy项和临界非线性的非线性椭圆方程的非平凡解的存在性和多重性. Via dual variational principle, we show the existence and multiplicity of nontrivial solutions for a nonlinear elliptic equations with Hardy term and critical nonlinearity.
作者 黄丽容
出处 《应用泛函分析学报》 CSCD 2006年第4期319-323,共5页 Acta Analysis Functionalis Applicata
关键词 多重解 对偶变分方法 临界Hardy—Sobolev指数 multiple solutions dual variational principle critical Hardy-Sobolev exponent
  • 相关文献

参考文献11

  • 1Ambrosetti A,Brezis H,Cerami G.Combined effects of concave and convex nonlinearities in some elliptic problems[J].Functional Analysis,1994,122:519-543.
  • 2Ambrosetti A,Garcia J,Peral I.Multiplicity results for some nonlinear elliptic equations[J].Functional Analysis,1996,137:219-242.
  • 3Chen J Q.Multiple positive solutions for a class of nonlinear elliptic equation[J].Math Anal Appl,2004,295:341-354.
  • 4Chen J Q.Some further results on a semilinear equation with concave-convex nonl1inearity[J].Nonlinear Analysis,TMA,2005,62:71-87.
  • 5Ferrero A,Gazzola F.Existence of solutions for singular critical growth semilinear elliptic equations[J].Differential Equations,2001,177:194-522.
  • 6Jannelli E.The role played by space dimension in elliptic critical problems[J].Differential Equation,1999,156:407-426.
  • 7Catrina F,Wang Z Q.On the Caffarelli-Kohn-Nirenberg inequalities:sharp constants,existence (and nonexistence) and symmetry of extremal functions[J].Comm Pure Appl Math,2001,56:229-258.
  • 8Terracini S.On positive entire solutions to a class of equations with singular coefficient and critical exponent[J].Adv Diff Equa,1996,1(2):241-264.
  • 9Brezis H,Lieb E.A relation between pointwise convergence of functions and convergence of functionals[J].Proc Amer Math Soc,1983,88:486-490.
  • 10Ambrosetti A,Rabinowitz P.Dual variational methods in critical point theory and applications[J].Functional Analysis,1973,14:349-381.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部