期刊文献+

有限个李普希兹伪压缩映射近迫点序列的收敛性 被引量:1

Approximate Fixed Point Sequences for a Finite Family of Lipschitz Pseudocontractive Maps
下载PDF
导出
摘要 研究了Banach空间中有限个李普希兹伪压缩映射近迫点序列的收敛性问题,此结果推广了以前的结论. We study the iterative approximation problem of fixed point for a finite family of Lipschitz pseudocontractive mappings. The work in this paper is an extension and complement of the previous work.
出处 《应用泛函分析学报》 CSCD 2006年第4期353-356,共4页 Acta Analysis Functionalis Applicata
基金 国家自然科学基金(10471033) 河北省科技厅软科学基金(054572215)
关键词 李普希兹伪压缩映射 近追点序列 弱内向映射 Lipschitz pseudocontractive mappings approximate fixed point sequences weakly inward mapping
  • 相关文献

参考文献4

  • 1Chidume C E,Zegeye H.Approximate fixed point sequences and convergence theorems for Lipschitz pseudocontractive maps[J].Proceedings of the American Mathematical Society,2003,132 (3):831-840.
  • 2Kato T.Nonlinear semigroups and evolution equations[J].J Math Soc Japan,1967,19:508-520.
  • 3Morales C H,Jung J S.Convergence of paths for pseudocontractive mappings in Banach spaces[J].Proc Amer Math Soc,2000.3411-3419.MR 2001b:47090.
  • 4Moore C,Nnoli B V C.Iterative solution of nonlinear equations involving set-valued uniformly accretive operators[J].Comput Math Appl,2001,42:131-140.MR 2002f:47145.

同被引文献6

  • 1CHANG Shi-sheng.Some Results for Asylmptotically Pseudo-contractive Mappings an Asylmptotically Nonexpansive Mappings[J].Proc Amer Math Sco,2001,129:845-853.
  • 2MOORE C,NNOLI B V C.Iterative Sequence for Asymptotically Demicontractive Maps in Banach Spaces[J].J Math Anal Appl,2005,302:557-562.
  • 3TAN K K,XU H K,Approximating Fixed Points of Nonexpansive Mappings by the Ishikawa Iteration Process[J].J Math Anal Appl,1993,178:301-308.
  • 4SUN Zhao-hong.Strong Convergence of an Implicit Iteration Process for a Finite Family of Asymptotically Quasi-nonexpansive Mappings[J].J Math Anal Appl,2003,286:351-358.
  • 5LIU Li-sang.Ishikawa-type and Mann-type Iterative Processes with Errors for Constructing Solution of Nonlinear Equations Involving m-accretive Operators in Banach Spaces[J].Nonlinear Anal,1998,34:307-317.
  • 6高改良,陈东青,郭金题,吴辰余.关于带误差项的修改的Mann迭代格式[J].河北师范大学学报(自然科学版),2004,28(2):113-115. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部