摘要
考虑一族奇异摄动时滞微分方程.基于奇异摄动时滞方程准确解的性质,在分片等矩的Shishkin型网格上构造了线性奇异摄动时滞方程的有限差分格式,证得数值结果是关于小参数一致收敛的.应用牛顿拟线性法求解非线性奇异摄动时滞方程.数值实验证实了理论结果的准确性,进而表明该理论估计是稳健的.
Based on the property of analytical solution of singularly perturbed delay differential equation (SPDDE), a finite difference scheme of linear SPDDE on the appropriate piecewise uniform Shishkin-type mesh is constructed. It is porved that the numerical result is ε uniform convergence in the maximum norm. Newton quasi-linearization method is used to solve the non-linear equations. Numerical results show the validity of the method.
出处
《宁夏大学学报(自然科学版)》
CAS
北大核心
2006年第4期293-296,共4页
Journal of Ningxia University(Natural Science Edition)
基金
国家自然科学基金资助项目(10301029
10671180)
浙江省教育厅科研计划资助项目(20060182)