期刊文献+

某类非自治二阶系统具鞍点特征的周期解的存在性 被引量:2

Existence of Periodic Solutions with Saddle Point Characteristics for Some Non-Autonomous Second Order Systems
下载PDF
导出
摘要 研究一类非自治二阶系统周期解的存在性问题.利用鞍点约化方法,证明了该系统具鞍点特征的周期解的存在性,得到了一些新的可解性条件. This paper studies the existence of periodic solutions for some non-autonomous second order systems. The existence theorems of periodic solution with saddle point characteristics are obtained by using saddle point reduction methods.
作者 陈劲 赵富坤
出处 《宁夏大学学报(自然科学版)》 CAS 北大核心 2006年第4期305-307,共3页 Journal of Ningxia University(Natural Science Edition)
基金 云南省自然科学基金资助项目(2005A0017Q) 云南省教育厅自然科学基金资助项目(04Y798A)
关键词 临界点 非自治二阶系统 鞍点特征 SOBOLEV不等式 critical point non-autonomous second order systems saddle point characteristics Sobolev's inequality
  • 相关文献

参考文献7

  • 1MAWHIN J,WILLEM M.Critical point theory and Hamiltonian systems[J].New York:Springer-Verlag,1989.
  • 2AMANN H.Saddle points and multiple solutions of differential equations[J].Math Z,1979,169:127-166.
  • 3ZHAO FUKUN,WU XIAN.Saddle point reduction method for some non-autonomous second order systems[J].J Math Anal Appl,2004,291:653-665.
  • 4TANG CHUNLEI.Periodic solutions of nonautonomous second order systems with γ-quasisubadditive potential[J].J Math Anal Appl,1995,189:671-675.
  • 5TANG CHUNLEI.Periodic solutions of nonautonomous second order systems[J].J Math Anal Appl,1996,202:465-469.
  • 6TANG CHUNLEI.Periodic solutions for nonautonomous second order systems with sublinear nonlinearity[J].Proc Amer Math Soc,1998,126:3263-3270.
  • 7TANG CHUNLEI.Periodic solutions of a class of nonautonomous second order systems[J].J Math Anal Appl,1999,236:227-235.

同被引文献19

  • 1Mawhin J, Willim M. Critical Point Theory and HamitonSystem[M]. New York:Springer Verleg,1989:8-11.
  • 2陆文端.微分方程的变分方法[M].成都:四川大学出版社,1995:139-222.
  • 3Tang C. Periodic Solutions For Nonautonomous SecondOrder System With Sublinear Nonlinearity [J]. Pro-ceeding of Americal Mathematical Society. 1998, 126(11):3263-3270.
  • 4Zhao F, Wu X. Existence and multiplicity of periodicsolution for non-autonomous second-order systems withlinear nonlinearity [ J]. Nonlinear Analysis, 2005 ? 60(2): 325-335.
  • 5Tang C L,Wu X P. Some critical point theorems andtheir applications to periodic solution for second orderHamiltonian systems[J]. Journal of Differential Equa-tions, 2010,248(4): 660-692.
  • 6Zhao F, Wu X. Saddle point reduction method for somenon-autonomous second order systems [J]. Journal ofMathematical Analysis and Applied?2004,291(2) :653-665.
  • 7Wu X. Saddle point characterization and multiplicity of peri-odic solutions of non-autonomous second-order systems[J].Nonlinear Analysis, 2004,58(8) : 899-907.
  • 8Amann H. Saddle Points and Mutiple Solutions of Dif-ferential Equations [J]. Zentralblatt fur Mathematikundihre Grenzgebiete, 1979,169(3) : 127-166.
  • 9Mawhin J,WiUim M.Critical Point Theory and Hamiton System[M].New York: Springer-Ver leg, 1989.
  • 10C.Tang.Periodic Solutions For Nonauto-nomous Sec-ond Order System With Subli- near nonlinearity[J] . Proc.Amer. Math. Soc.11(126) (1998):3263-3270.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部