期刊文献+

q-一致平滑Banach空间上非线性变分包含组的逼近可解性

The Approximate Solvability of A System of Nonlinear Variational Inclusions In q-Uniformly Smooth Banach Spaces
下载PDF
导出
摘要 在q-一致平滑Banach空间中研究了一类非线性变分包含组,运用m-增殖映射的预解算子技巧,构造了一类迭代序列,证明了在q-一致平滑Banach空间上这类迭代序列的收敛性,推广了Verma一文中的有关结果. In this paper, we study a system of nonlinear variational inclusions in q-uniformly smooth Banach spaces. By using resolvent operator technique for m-accretive mappings. We constract some iterative algorithms for solving this system of nonlinear variational inclusions, the convergence of iterative algorithms be proved in q-uniformly smooth Banach spaces. The corresponding result of Verma is extended.
作者 葛静 杨青
出处 《淮阴师范学院学报(自然科学版)》 CAS 2006年第4期264-266,269,共4页 Journal of Huaiyin Teachers College;Natural Science Edition
关键词 一类非线性变分包含组 m-增殖映射 预解算子 松弛共强制映射 迭代算法 system of nonlinear variational inclusions m-accretive mappings resolvent operator relaxed cocoercive mappings iterative algorithms
  • 相关文献

参考文献6

  • 1[1]Verma R U.Projection methods,algorithms,and a new system of nonlinear variational inequalities[J].Computer Math Appl,2001,41:1025-1031.
  • 2[2]Verma R U.A class of quasivariational inequalities cocoercive mappings[J].Adv Nonlinear Var Inequal,1999,2(2):1-12.
  • 3[3]Verma R U.An extension of a class of nonlinear quasivariational inequalitiy problems based on a projection method[J].Math Sci Res Hot-Line,1999,3(5):1-10.
  • 4[4]Barbu V.Nonlinear semigroups and Differential Equations in Banach Space[M].Noordhaff:Leyden,1979.
  • 5[5]Xu H K.Inequalities in Banach Spaces with Applications[J].Nonlinear Anal.1991,16:1127-1138.
  • 6[6]Wittman R.Approximation of fixed points of nonexpansive mappings[J].Arch Math,1992(58):486-491.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部