摘要
在q-一致平滑Banach空间中研究了一类非线性变分包含组,运用m-增殖映射的预解算子技巧,构造了一类迭代序列,证明了在q-一致平滑Banach空间上这类迭代序列的收敛性,推广了Verma一文中的有关结果.
In this paper, we study a system of nonlinear variational inclusions in q-uniformly smooth Banach spaces. By using resolvent operator technique for m-accretive mappings. We constract some iterative algorithms for solving this system of nonlinear variational inclusions, the convergence of iterative algorithms be proved in q-uniformly smooth Banach spaces. The corresponding result of Verma is extended.
出处
《淮阴师范学院学报(自然科学版)》
CAS
2006年第4期264-266,269,共4页
Journal of Huaiyin Teachers College;Natural Science Edition
关键词
一类非线性变分包含组
m-增殖映射
预解算子
松弛共强制映射
迭代算法
system of nonlinear variational inclusions
m-accretive mappings
resolvent operator
relaxed cocoercive mappings
iterative algorithms