期刊文献+

一种基于Real AdaBoost算法的EOM人脸检测方法 被引量:1

EOM Face Detection Method Based on Real AdaBoost Algorithm
原文传递
导出
摘要 提出一种基于Real AdaBoost算法的边缘方位匹配(EOM)人脸检测方法。该方法提取人脸图像的边缘方位特征,一定程度上克服光照等干扰因素的影响。采用Real AdaBoost算法通过多次迭代学习过程获取人脸的整体模式(全局特征点集)。在每次迭代学习过程中,采用区域选择策略获取人脸的局部模式(局部特征点集),与传统的EOM方法相比,本文方法所获取的人脸模式更精确,正面人脸检测实验证实这一点。 A Real AdaBoost algorithm based EOM (edge-orientation matching) method is proposed for face detection. The edge orientation feature is extracted from the original face images to eliminate the influence of some disturbances such as variable lighting to a certain extent. The global face pattern (global feature point set) is obtained by using the Real AdaBoost algorithm through multiple iterative learning procedures, and the local pattern (local feature point set) is acquired by utilizing the area-selecting strategy during each iterative procedure. A precise face pattern is found by the proposed method rather than by the original EOM method, which is confirmed by the experiment of frontal face detection.
作者 陈华杰 韦巍
出处 《模式识别与人工智能》 EI CSCD 北大核心 2006年第6期812-817,共6页 Pattern Recognition and Artificial Intelligence
关键词 人脸检测 边缘方位匹配(EOM)方法 REAL ADABOOST算法 区域选择策略 Face Detection, Edge-Orientation Matching (EOM) Method, Real AdaBoost Algorithm,Area-Selecting Strategy
  • 相关文献

参考文献17

  • 1Yang M H, Kriegman D J, Ahuja N. Detecting Faces in Images: A Survey. IEEE Trans on Pattern Analysis and Machine Intelligence, 2002, 24(1): 34-58
  • 2梁路宏,艾海舟,徐光祐,张钹.人脸检测研究综述[J].计算机学报,2002,25(5):449-458. 被引量:354
  • 3Viola P, Jones M J. Rapid Object Detection Using a Boosted Cascade of Simple Features//Proe of the IEEE Conference On Computer Vision and Pattern Recognition. Hawaii, USA, 2001, Ⅰ: 511-518
  • 4Zhang Z Q, Zhu LZ, Li S, et al. Real,Time Multi-Viesv Face Detection//Proc of the 5th International Conference on Automatic Face and Gesture Recognition. Washington, USA, 2002: 142-147
  • 5Froba B, Kttblbeck C. Real-Time Face Detection Using Edge-Orientation Matching//Proc of the 3th International Conference on Audio-and Video-Based Biometrie Person Authentication. Halmstad, Sweden, 20015 78-83
  • 6Froba B, Ernst A, Fast Frontal-View Face Detection Using a Multi-Path Decision Tree// Proc of the 4th International Conference on Audio-and Video-Based Biometric Person Authentication. Heidelberg, Germany, 2003:921-928
  • 7Schapire R E, A Brief Introduction to Boosting // Proc of the 16th International Joint Conference on Artificial Intelligence. Stockholm, Sweden, 1999:1401-1406
  • 8Schapire R E, Freund Y, Bartlett P, et al. Boosting the Margin: A New Explanation for the Effectiveness of Voting Methods. Annals of Statistics, 1998, 26(5): 1651-1686
  • 9Schapire R E, Singer Y. Improved Boosting Algorithms Using Confidence-Rated Predictions. Machine Learning, 1999, 37(3) : 297-336
  • 10Friedman J, Hastie T, Tibshirani R. Additive Logistic Regression: A Statistical View of Boosting. Annals of Statistics, 2000, 28(2): 337-407

二级参考文献61

  • 1Craw I, Ellis H, Lishman J. Automatic extraction of face features. Pattern Recognition Letters, 1987, 5(2):183-187
  • 2Yang G Z, Huang T S. Human face detection in a complex background. Pattern Recognition, 1994, 27(1):53-63
  • 3Dai Y, Nakano Y. Face-texture model based on SGLD and its application in face detection in a color scene. Pattern Recognition, 1996, 29(6):1007-1017
  • 4Kouzani A Z, He F, Sammut K. Commonsense knowledge-based face detection. In: Proc Conference on Intelligent Engineering Systems, Budapast, Hungary, 1997. 215-220
  • 5Garcia C, Tziritas G. Face detection using quantized skin color regions merging and wavelet packet analysis. IEEE Trans Multimedia, 1999, 1(3):264-277
  • 6Sun Q B, Huang W M, Wu J K. Face detection based on color and local symmetry information. In: Proc Conference Automatic Face and Gesture Recognition, Nara, Japan, 1998. 130-135
  • 7Kim S H, Kim H G. Face detection using multi-modal information. In: Proc Conference on Automatic Face and Gesture Recognition, Grenoble, France, 2000. 70-76
  • 8Govindaraju V, Srihari S N, Sher D B. A computational model for face location. In: Proc IEEE Conference on Computer Vision, Osaka, Japan, 1990. 718-721
  • 9Lam K M. A fast approach for detecting human faces in a complex background. In: Proc Symposium on Circuits and Systems, Monterey, 1998, 4:85-88
  • 10Yow K C, Cipolla R. A probabilistic framework for perceptual grouping of features for human face detection. In: Proc Conference on Automatic Face and Gesture Recognition, Killington, Vermont, USA, 1996. 16-21

共引文献353

同被引文献5

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部