期刊文献+

APPLIED RESEARCH ON NEW MULTI-FUNCTION GASOLINE ADDITIVE

APPLIED RESEARCH ON NEW MULTI-FUNCTION GASOLINE ADDITIVE
下载PDF
导出
摘要 In order to assess the performance of a new cleansing and combustion-improving gasoline additive (MAZ), and to explore the evaluation methods of additives, two engines with the same model number and performance indices, fueled with and without the MAZ gasoline additive respectively, are carried through 100 h strenuous tests on a bench. The results obtained in full load characteristic and load characteristics of different operational modes are compared. It indicates that the power, economy and emission of the engine fueled with the MAZ additive all have obvious improvement in comparison with the engine without adding the additive: the power increasing by 16.43%, specific fuel consumption (SFC) decreasing 5.39%, and the emission of CO, HC and NOx falling by 28.61%, 54.38% and 10.1% respectively. Wear and tear of the engine cylinder is weakened, and sediment of combustion chamber inner side is reduced. In addition, no negative effect on the catalytic conversion device is found. In order to assess the performance of a new cleansing and combustion-improving gasoline additive (MAZ), and to explore the evaluation methods of additives, two engines with the same model number and performance indices, fueled with and without the MAZ gasoline additive respectively, are carried through 100 h strenuous tests on a bench. The results obtained in full load characteristic and load characteristics of different operational modes are compared. It indicates that the power, economy and emission of the engine fueled with the MAZ additive all have obvious improvement in comparison with the engine without adding the additive: the power increasing by 16.43%, specific fuel consumption (SFC) decreasing 5.39%, and the emission of CO, HC and NOx falling by 28.61%, 54.38% and 10.1% respectively. Wear and tear of the engine cylinder is weakened, and sediment of combustion chamber inner side is reduced. In addition, no negative effect on the catalytic conversion device is found.
出处 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2006年第4期626-632,共7页 中国机械工程学报(英文版)
基金 This project is supported by Provincial Natural Science Foundation of Guangdong, China and Provincial Environmental Protection Science Foundation of Guangdong, China(No.320-D3800).
关键词 Gasoline additives Strenuous tests Energy-saving Exhaust emission Gasoline additives Strenuous tests Energy-saving Exhaust emission
  • 相关文献

参考文献5

二级参考文献14

共引文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部